小样本学习综述

本文介绍了小样本学习的关键概念,特别是Meta Learning,探讨了MAML算法的模型无关性及其在深度网络快速适应中的应用。此外,文章还讨论了原型网络的原理与实现,并分享了小样本学习在文本分类中的实践案例和优秀算法代码资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说到小样本学习一定要先看Meta Learning

小样本学习的名词解释说明

MAML算法提供一个模型无关计算框架,怎么做到模型无关,主要是loss计算不同,计算框架类似adaboost,里面可以换各种算法

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

原始论文必看

github代码

meta.py的forward可以看出loss的计算

            for k in range(1, self.update_step):
                # 1. run the i-th task and compute loss for k=1~K-1
                logits = self.net(x_spt[i], fast_weights, bn_training=True)
                loss = F.cross_entropy(logits, y_spt[i])
                # 2. compute grad on theta_pi
                grad = torch.autograd.grad(loss, fast_weights)
                # 3. theta_pi = theta_pi - train_lr * grad
                fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, f
小样本学习是指在数据集非常小的情况下进行机器学习任务。在这种情况下,模型容易过拟合且泛化能力较弱。为了解决这个问题,可以使用数据增强方法来扩充数据集,从而提高模型的泛化能力。下面介绍三种常用的数据增强方法。 1. 几何变换 几何变换是指对图像进行平移、旋转、缩放等操作,生成新的图像。这种方法可以通过简单的变换来扩充数据集,同时可以增强模型对物体位置、大小、方向等的鲁棒性。常用的几何变换方法有旋转、平移、缩放、裁剪等。这些方法可以使用OpenCV、PIL等图像处理库来实现。 2. 颜色变换 颜色变换是指对图像的颜色进行调整,生成新的图像。这种方法可以通过改变亮度、对比度、色彩平衡等方式来扩充数据集,同时可以增强模型对不同光照条件下的鲁棒性。常用的颜色变换方法有亮度调整、对比度增强、色彩平衡调整等。这些方法可以使用OpenCV、PIL等图像处理库来实现。 3. 增加噪声 增加噪声是指对图像中加入一些随机噪声,生成新的图像。这种方法可以模拟许多真实场景下的噪声,如图像压缩、传感器噪声等,从而提高模型的泛化能力。常用的噪声方法有高斯噪声、椒盐噪声、泊松噪声等。这些方法可以使用numpy等库来实现。 以上三种方法是常用的数据增强方法,可以通过组合使用来扩充数据集。同时,也可以根据具体任务的特点,选择合适的数据增强方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值