tensorflow中的sess.run()方法详解

本文详细解析了TensorFlow中sess.run()方法的使用,包括如何通过feed_dict将值输入到计算图中,以及在LSTM和CNN模型训练与预测过程中的应用。在训练时,整个计算图被计算,而在预测时则不计算损失值。通过将参数设为变量,可以实现模型的循环训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

run()方法详解链接

feed_dict={y:3}

把3赋值给y,当次计算有效。

在lstm和cnn进行train和predict

def run_step(self, sess, is_train, batch):
        """
        :param sess: session to run the batch
        :param is_train: a flag indicate if it is a train batch
        :param batch: a dict containing batch data
        :return: batch result, loss of the batch or logits
        """
        feed_dict = self.create_feed_dict(is_train, batch)
        if is_train:
            global_step, loss, _ = sess.run(
                [self.global_step, self.loss, self.train_op],
                feed_dict)
            return global_step, loss
        else:
            lengths, logits = sess.run([self.lengths, self.logits], feed_dict)
            return lengths, logits

训练的时候图全部计算而预测的时候图不用计算损失值

def predict(self, se
### TensorFlow `gen_math_ops.mat_mul` 使用说明 #### 函数签名 ```python gen_math_ops.mat_mul(a, b, transpose_a=False, transpose_b=False, adj_x=None, adj_y=None, name=None) ``` #### 参数详解 - **a**: 类型为 `Tensor` 的第一个输入矩阵。支持的数据类型包括 `float16`, `bfloat16`, `float32`, `float64`, `int32`, `complex64`, 和 `complex128`[^2]。 - **b**: 类型为 `Tensor` 的第二个输入矩阵,数据类型需与参数 `a` 相同。 - **transpose_a (可选)**: 布尔值,默认为 `False`。如果设置为 `True`,则在执行乘法前先转置张量 `a`。 - **transpose_b (可选)**: 布尔值,默认为 `False`。如果设置为 `True`,则在执行乘法前先转置张量 `b`。 - **adj_x (已弃用)**: 此参数已被移除,在新版本中不再使用。 - **adj_y (已弃用)**: 同样被移除的参数,不应再使用。 - **name (可选)**: 用于指定操作名称的空间中的唯一标识符字符串。这有助于调试和可视化工具如 TensorBoard 显示更清晰的操作流程图。 #### 返回值 返回一个新的 `Tensor` 对象,表示两个输入矩阵按上述规则相乘后的结果。 #### 示例代码 下面是一个简单的例子来展示如何使用 `mat_mul`: ```python import tensorflow as tf # 定义两个常量矩阵 matrix1 = tf.constant([[0.7, 0.9]], dtype=tf.float32) matrix2 = tf.Variable(tf.random.normal([2, 3], stddev=1, seed=1), dtype=tf.float32) # 执行矩阵乘法 result = gen_math_ops.mat_mul(matrix1, matrix2) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(result)) ``` 此段代码创建了一个形状为 `[1, 2]` 的常量矩阵以及一个形状为 `[2, 3]` 的变量矩阵,并通过调用 `gen_math_ops.mat_mul()` 来计算它们之间的乘积[^3]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值