线性代数笔记18--行列式公式、代数余子式

本文详细解释了如何通过分步过程推导二阶和三阶行列式的计算方法,包括将矩阵分解成便于计算的部分,并介绍了余子式和代数余子式的概念。文章还提及了矩阵的周期性特点,如三对角线矩阵的规律

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 行列式公式推导

二阶行列式推导
[abcd]=[a0cd]+[0bcd]=[a00d]+[a0c0]+[0bc0]+[0b0d]=[a00d]−[b00c]=ad−bc \begin{align} \begin{bmatrix} a & b \\ c & d \end{bmatrix}&= \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}+ \begin{bmatrix} 0 & b \\ c & d \end{bmatrix}\nonumber \\ &= \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}+ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix}+ \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix}+ \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix} \nonumber\\ &=\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}- \begin{bmatrix} b & 0 \\ 0 & c \end{bmatrix} \nonumber\\ &= ad -bc\nonumber \end{align} [acbd]=[ac0d]+[0cbd]=[a00d]+[ac00]+[0cb0]+[00bd]=[a00d][b00c]=adbc

三阶行列式推导

[abcdefghi]=[a00defghi]+[0b0defghi]+[00cdefghi]=[a000e0ghi]+[a0000fghi]+[0b0d00ghi]+[0b000fghi]+[00cd00ghi]+[00c0e0ghi]=[a000e000i]+[a0000f0h0]+[0b0d0000i]+[0b000fg00]+[00cd000h0]+[00c0e0g00]=aei+bfg+cdh−ahf−bdi−ceg\begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i\\ \end{bmatrix} =\begin{bmatrix} a & 0 & 0\\ d & e & f\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ d & e & f\\ g & h & i\\ \end{bmatrix} +\begin{bmatrix} 0 & 0 & c\\ d & e & f\\ g & h & i\\ \end{bmatrix}\\ =\begin{bmatrix} a & 0 & 0\\ 0 & e & 0\\ g & h & i\\ \end{bmatrix} +\begin{bmatrix} a & 0 & 0\\ 0 & 0 & f\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ d & 0 & 0\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ 0 & 0 & f\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & 0 & c\\ d & 0 & 0\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & 0 & c\\ 0 & e & 0\\ g & h & i\\ \end{bmatrix}\\= \begin{bmatrix} a & 0 & 0\\ 0 & e & 0\\ 0 & 0 & i\\ \end{bmatrix}+ \begin{bmatrix} a & 0 & 0\\ 0 & 0 & f\\ 0 & h & 0\\ \end{bmatrix} +\begin{bmatrix} 0 & b & 0\\ d & 0 & 0\\ 0 & 0 & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ 0 & 0 & f\\ g & 0 & 0\\ \end{bmatrix}+ \begin{bmatrix} 0 & 0 & c\\ d & 0 & 0\\ 0 & h & 0\\ \end{bmatrix} +\begin{bmatrix} 0 & 0 & c\\ 0 & e & 0\\ g & 0 & 0\\ \end{bmatrix} \\= aei+bfg+cdh-ahf-bdi-ceg adgbehcfi=adg0eh0fi+0dgbeh0fi+0dg0ehcfi=a0g0eh00i+a0g00h0fi+0dgb0h00i+00gb0h0fi+0dg00hc0i+00g0ehc0i=a000e000i+a0000h0f0+0d0b0000i+00gb000f0+0d000hc00+00g0e0c00=aei+bfg+cdhahfbdiceg

行列式公式
det A=∑j1,j2,j3is permutaion±a1j1a2j2...anjn∀jt1,jt2∧t1≠t2⇒jt1≠jt2 det\ A=\sum_{j_1,j_2,j_3\quad is\ permutaion}\pm a_{1j_1}a_{2j_2}...a_{nj_n}\\ \forall j_{t_1},j_{t_2} \wedge t_1 \ne t_2 \Rightarrow j_{t_1} \ne j_{t_2} det A=j1,j2,j3is permutaion±a1j1a2j2...anjnjt1,jt2t1=t2jt1=jt2

即选取的列坐标不重复,构成了一个排列。
所以非0项共有n!n!n!项。

余子式
Mij:方阵去掉i行j列后的方阵的行列式 M_{ij}:方阵去掉i行j列后的方阵的行列式 Mij:方阵去掉ij列后的方阵的行列式
代数余子式
Aij:(−1)i+jMij A_{ij}:(-1)^{i+j}M_{ij} Aij:(1)i+jMij

方阵行列式:
det A=∑1nAik,1≤i≤n det\ A=\sum_{1}^{n}A_{ik}, 1 \le i \le n det A=1nAik,1in

2. 三对角线矩阵

[1100111001110011] \begin{bmatrix} 1 & 1 & 0 & 0\\ 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1\\ 0 & 0 & 1 & 1\\ \end{bmatrix} 1100111001110011

∣A1∣=1|A_1|=1A1=1
∣A2∣=0|A_2|=0A2=0
∣A3∣=−−1|A_3|=--1A3=1
∣A4∣=−1|A_4|=-1A4=1
∣A5∣=−0|A_5|=-0A5=0
∣A6∣=1|A_6|=1A6=1

周期为6

AnA_nAn的意思是以1,11,11,1为起始点的向右向下扩展kkk个单位的矩阵。


A3=[110111011] A_3= \begin{bmatrix} 1 & 1 & 0\\1 & 1 & 1 \\0 & 1 & 1 \end{bmatrix} A3=110111011

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值