1. 行列式公式推导
二阶行列式推导
[abcd]=[a0cd]+[0bcd]=[a00d]+[a0c0]+[0bc0]+[0b0d]=[a00d]−[b00c]=ad−bc
\begin{align}
\begin{bmatrix}
a & b \\ c & d
\end{bmatrix}&=
\begin{bmatrix}
a & 0 \\ c & d
\end{bmatrix}+
\begin{bmatrix}
0 & b \\ c & d
\end{bmatrix}\nonumber \\
&= \begin{bmatrix}
a & 0 \\ 0 & d
\end{bmatrix}+
\begin{bmatrix}
a & 0 \\ c & 0
\end{bmatrix}+
\begin{bmatrix}
0 & b \\ c & 0
\end{bmatrix}+
\begin{bmatrix}
0 & b \\ 0 & d
\end{bmatrix}
\nonumber\\
&=\begin{bmatrix}
a & 0 \\ 0 & d
\end{bmatrix}-
\begin{bmatrix}
b & 0 \\ 0 & c
\end{bmatrix} \nonumber\\
&= ad -bc\nonumber
\end{align}
[acbd]=[ac0d]+[0cbd]=[a00d]+[ac00]+[0cb0]+[00bd]=[a00d]−[b00c]=ad−bc
三阶行列式推导
[abcdefghi]=[a00defghi]+[0b0defghi]+[00cdefghi]=[a000e0ghi]+[a0000fghi]+[0b0d00ghi]+[0b000fghi]+[00cd00ghi]+[00c0e0ghi]=[a000e000i]+[a0000f0h0]+[0b0d0000i]+[0b000fg00]+[00cd000h0]+[00c0e0g00]=aei+bfg+cdh−ahf−bdi−ceg\begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i\\ \end{bmatrix} =\begin{bmatrix} a & 0 & 0\\ d & e & f\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ d & e & f\\ g & h & i\\ \end{bmatrix} +\begin{bmatrix} 0 & 0 & c\\ d & e & f\\ g & h & i\\ \end{bmatrix}\\ =\begin{bmatrix} a & 0 & 0\\ 0 & e & 0\\ g & h & i\\ \end{bmatrix} +\begin{bmatrix} a & 0 & 0\\ 0 & 0 & f\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ d & 0 & 0\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ 0 & 0 & f\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & 0 & c\\ d & 0 & 0\\ g & h & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & 0 & c\\ 0 & e & 0\\ g & h & i\\ \end{bmatrix}\\= \begin{bmatrix} a & 0 & 0\\ 0 & e & 0\\ 0 & 0 & i\\ \end{bmatrix}+ \begin{bmatrix} a & 0 & 0\\ 0 & 0 & f\\ 0 & h & 0\\ \end{bmatrix} +\begin{bmatrix} 0 & b & 0\\ d & 0 & 0\\ 0 & 0 & i\\ \end{bmatrix}+ \begin{bmatrix} 0 & b & 0\\ 0 & 0 & f\\ g & 0 & 0\\ \end{bmatrix}+ \begin{bmatrix} 0 & 0 & c\\ d & 0 & 0\\ 0 & h & 0\\ \end{bmatrix} +\begin{bmatrix} 0 & 0 & c\\ 0 & e & 0\\ g & 0 & 0\\ \end{bmatrix} \\= aei+bfg+cdh-ahf-bdi-ceg adgbehcfi=adg0eh0fi+0dgbeh0fi+0dg0ehcfi=a0g0eh00i+a0g00h0fi+0dgb0h00i+00gb0h0fi+0dg00hc0i+00g0ehc0i=a000e000i+a0000h0f0+0d0b0000i+00gb000f0+0d000hc00+00g0e0c00=aei+bfg+cdh−ahf−bdi−ceg
行列式公式
det A=∑j1,j2,j3is permutaion±a1j1a2j2...anjn∀jt1,jt2∧t1≠t2⇒jt1≠jt2
det\ A=\sum_{j_1,j_2,j_3\quad is\ permutaion}\pm a_{1j_1}a_{2j_2}...a_{nj_n}\\
\forall j_{t_1},j_{t_2} \wedge t_1 \ne t_2 \Rightarrow j_{t_1} \ne j_{t_2}
det A=j1,j2,j3is permutaion∑±a1j1a2j2...anjn∀jt1,jt2∧t1=t2⇒jt1=jt2
即选取的列坐标不重复,构成了一个排列。
所以非0
项共有n!n!n!项。
余子式
Mij:方阵去掉i行j列后的方阵的行列式
M_{ij}:方阵去掉i行j列后的方阵的行列式
Mij:方阵去掉i行j列后的方阵的行列式
代数余子式
Aij:(−1)i+jMij
A_{ij}:(-1)^{i+j}M_{ij}
Aij:(−1)i+jMij
方阵行列式:
det A=∑1nAik,1≤i≤n
det\ A=\sum_{1}^{n}A_{ik}, 1 \le i \le n
det A=1∑nAik,1≤i≤n
2. 三对角线矩阵
[1100111001110011] \begin{bmatrix} 1 & 1 & 0 & 0\\ 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1\\ 0 & 0 & 1 & 1\\ \end{bmatrix} 1100111001110011
∣A1∣=1|A_1|=1∣A1∣=1
∣A2∣=0|A_2|=0∣A2∣=0
∣A3∣=−−1|A_3|=--1∣A3∣=−−1
∣A4∣=−1|A_4|=-1∣A4∣=−1
∣A5∣=−0|A_5|=-0∣A5∣=−0
∣A6∣=1|A_6|=1∣A6∣=1
周期为6
AnA_nAn的意思是以1,11,11,1为起始点的向右向下扩展kkk个单位的矩阵。
如
A3=[110111011]
A_3=
\begin{bmatrix}
1 & 1 & 0\\1 & 1 & 1 \\0 & 1 & 1
\end{bmatrix}
A3=110111011