信息竞赛进阶指南--二叉堆(模板)

啥是二叉堆
二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。二叉堆有两种:最大堆和最小堆。最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。

插入节点
在数组的最末尾插入新节点。然后自下而上调整子节点与父节点(称作up-heap或bubble-up, percolate-up, sift-up, trickle up, heapify-up, cascade-up操作):比较当前节点与父节点,不满足堆性质则交换。从而使得当前子树满足二叉堆的性质。时间复杂度为 。
删除根节点
删除根节点用于堆排序。
对于最大堆,删除根节点就是删除最大值;对于最小堆,是删除最小值。然后,把堆存储的最后那个节点移到填在根节点处。再从上而下调整父节点与它的子节点:对于最大堆,父节点如果小于具有最大值的子节点,则交换二者。这一操作称作down-heap或bubble-down, percolate-down, sift-down, trickle down, heapify-down, cascade-down,extract-min/max等。直至当前节点与它的子节点满足堆性质为止。
构造二叉堆
一个直观办法是从单节点的二叉堆开始,每次插入一个节点。其时间复杂度为。
最优算法是从一个节点元素任意放置的二叉树开始,自底向上对每一个子树执行删除根节点时的Max-Heapify算法(这是对最大堆而言)使得当前子树成为一个二叉堆。具体而言,假设高度为h的子树均已完成二叉堆化,那么对于高度为h+1的子树,把其根节点沿着最大子节点的分枝做调整,最多需要h步完成二叉堆化。可以证明,这个算法的时间复杂度为O(n)。
合并两个二叉堆
最优方法是把两个二叉堆首尾相连放在一个数组中,然后构造新的二叉堆。时间复杂度为,其中n、k为两个堆的元素数目。
如果经常需要合并两个堆的操作,那么使用二项式堆更好,其时间复杂度为。
实现:

// 二叉堆
int heap[SIZE], n;
void up(int p) {
	while (p > 1) {
		if (heap[p] > heap[p/2]) {
			swap(heap[p], heap[p/2]);
			p/=2;
		}
		else break;
	}	
}
void down(int p) {
	int s = p*2;
	while (s <= n) {
		if (s < n && heap[s] < heap[s+1]) s++;
		if (heap[s] > heap[p]) {
			swap(heap[s], heap[p]);
			p = s, s = p*2;
		}
		else break;
	}
}
void Insert(int val) {
	heap[++n] = val;
	up(n);
}
int GetTop() {
	return heap[1];
}
void Extract() {
	heap[1] = heap[n--];
	down(1);
}
void Remove(int k) {
	heap[k] = heap[n--];
	up(k), down(k);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值