python 实现FFT快速傅立叶变换算法

FFT快速傅里叶变换介绍

FFT(快速傅里叶变换)是计算离散傅里叶变换(DFT)及其逆变换的一种高效算法。DFT是一种将信号从时域转换到频域的数学工具,而FFT通过减少计算量来加速这一过程。

FFT的基本思想

FFT利用了DFT中的对称性和周期性,通过分而治之的策略将DFT分解为更小的DFT,从而显著减少计算复杂度。对于长度为N的序列,直接计算DFT的复杂度是O(N^2),而FFT的复杂度可以降低到O(N log N)。

FFT的算法步骤(以Cooley-Tukey算法为例)

选择分解:首先,将N(序列长度)分解为两个较小的因子,通常是选择N的偶数因子。最常见的分解是将N分解为两个相等的因子(即N为2的幂)。

重新排序(位反转):对输入序列进行位反转排序,这是为了将输入序列重新排列成一种便于后续处理的顺序。

蝶形运算:FFT算法的核心是蝶形运算。在蝶形运算中,两个输入(通常来自序列的特定位置)通过一系列乘法和加法操作结合成一个输出。这个过程在算法的不同层级上重复进行。

逐层计算:FFT算法通过逐层(从最低层到最高层)应用蝶形运算来计算DFT。每一层都基于前一层的输出,并且每一层的计算都更加接近最终的DFT结果。

Python FFT快速傅立叶变换

在Python中,实现快速傅里叶变换(FFT)的一种简便方法是使用numpy库中的fft模块。numpy提供了高效的FFT算法实现,能够处理一维或多维数组。

以下是一个简单的例子,展示如何使用numpy中的fft.fft函数来计算一维数组的FFT。

首先,确保你已经安装了numpy库。如果没有安装,可以通过pip安装:

pip install numpy

然后,你可以使用以下Python代码来计算FFT:

import numpy as np
import matplotlib.pyplot as plt

# 创建一个样本信号,例如一个包含正弦波和余弦波的复合信号
Fs = 1000  # 采样频率
T = 1/Fs  # 采样周期
L = 1500  # 信号长度
t = np.linspace(0, L-1, L)*T  # 时间向量

# 创建一个复合信号
S = 0.7*np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值