FFT快速傅里叶变换介绍
FFT(快速傅里叶变换)是计算离散傅里叶变换(DFT)及其逆变换的一种高效算法。DFT是一种将信号从时域转换到频域的数学工具,而FFT通过减少计算量来加速这一过程。
FFT的基本思想
FFT利用了DFT中的对称性和周期性,通过分而治之的策略将DFT分解为更小的DFT,从而显著减少计算复杂度。对于长度为N的序列,直接计算DFT的复杂度是O(N^2),而FFT的复杂度可以降低到O(N log N)。
FFT的算法步骤(以Cooley-Tukey算法为例)
选择分解:首先,将N(序列长度)分解为两个较小的因子,通常是选择N的偶数因子。最常见的分解是将N分解为两个相等的因子(即N为2的幂)。
重新排序(位反转):对输入序列进行位反转排序,这是为了将输入序列重新排列成一种便于后续处理的顺序。
蝶形运算:FFT算法的核心是蝶形运算。在蝶形运算中,两个输入(通常来自序列的特定位置)通过一系列乘法和加法操作结合成一个输出。这个过程在算法的不同层级上重复进行。
逐层计算:FFT算法通过逐层(从最低层到最高层)应用蝶形运算来计算DFT。每一层都基于前一层的输出,并且每一层的计算都更加接近最终的DFT结果。
Python FFT快速傅立叶变换
在Python中,实现快速傅里叶变换(FFT)的一种简便方法是使用numpy库中的fft模块。numpy提供了高效的FFT算法实现,能够处理一维或多维数组。
以下是一个简单的例子,展示如何使用numpy中的fft.fft函数来计算一维数组的FFT。
首先,确保你已经安装了numpy库。如果没有安装,可以通过pip安装:
pip install numpy
然后,你可以使用以下Python代码来计算FFT:
import numpy as np
import matplotlib.pyplot as plt
# 创建一个样本信号,例如一个包含正弦波和余弦波的复合信号
Fs = 1000 # 采样频率
T = 1/Fs # 采样周期
L = 1500 # 信号长度
t = np.linspace(0, L-1, L)*T # 时间向量
# 创建一个复合信号
S = 0.7*np