数据结构与算法题目集(中文) - 7-8 哈利·波特的考试(25 分)

本文介绍了一个使用Floyd算法解决最短路径问题的经典案例。通过详细解释代码实现过程,展示了如何找到图中任意两点间的最短路径,并确定了最佳中转点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点击打开链接

题目大意:

解题思路:Floyd

AC 代码

#include<bits/stdc++.h>
#include<cmath>

#define mem(a,b) memset(a,b,sizeof a);
#define INF 0x3f3f3f3f

using namespace std;

typedef long long ll;
const int maxn=105;
int lens[maxn][maxn];

int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        mem(lens,INF);
        for(int i=0;i<m;i++)
        {
            int u,v,w; scanf("%d%d%d",&u,&v,&w);
            lens[u][v]=lens[v][u]=w;
        }

        for(int k=1;k<=n;k++)
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    if(lens[i][j]>lens[i][k]+lens[k][j])
                        lens[i][j]=lens[i][k]+lens[k][j];

        int MAX=INF,idx;
        for(int i=1;i<=n;i++)
        {
            int max=0;
            for(int j=1;j<=n;j++)
            {
                if(j==i) continue;
                if(lens[j][i]>max) max=lens[j][i]; // 统计每个点的最大需要的长度
            }

            if(max<MAX) MAX=max,idx=i; // 统计最佳 i 点的在那么多最大长度中,最小的那一个长度 max
        }

        if(MAX>=INF) puts("0");
        else printf("%d %d\n",idx,MAX);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆克和他的代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值