ACM模板 - 欧拉函数(PHI)

本文介绍了两种计算欧拉函数φ(n)的方法:直接单独求解和筛法。直接单独求解通过分解n的素因子计算φ(n),而筛法则是先筛选出n以内的所有素数,再利用这些素数来计算每个数的φ值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接单独求解

φ(n) = n * (1-1/p1) * (1-1/p2)....(1-1/pk),其中 p1、p2…pk 为 n 的所有素因子
比如:φ(12) = 12 * (1-1/2) * (1-1/3) = 4。

int euler(int x)
{
    int rs=x,a=x;
    for(int i=2; i*i<=a; i++)
        if(a%i==0) // 最开始先 a%i == 0 进去马上执行 rs 操作,是因为确保了 i 肯定是素数
        {
            rs=rs/i*(i-1); // 先进行除法是为了防止中间数据的溢出
            while(a%i==0) a/=i; // 确保下一个 i 是素数
        }
    if(a>1) rs=rs/a*(a-1);

    return rs;
}

筛法欧拉函数

在“直接单独求解”思想的基础上,可以用类似求素数的筛法。
先筛出 n 以内的所有素数,再以素数筛每个数的 φ 值。
比如:求 10 以内所有数的 φ 值:
设一数组 phi[11],赋初值 phi[1]=1,phi[2]=2...phi[10]=10;
然后从 2 开始循环,把 2 的倍数的 φ 值 *(1-1/2),则 phi[2]=2*1/2=1, phi[4]=4*1/2=2, phi[6]=6*1/2=3....;
再是 3,3 的倍数的 φ 值 *(1-1/3),则 phi[3]=3*2/3=2, phi[6]=3*2/3=2, phi[9]=.....;
再5,再7...因为对每个素数都进行如此操作,因此任何一个 n 都得到了 φ(n) = n * (1-1/p1) * (1-1/p2)....(1-1/pk) 的运算。

const int maxn=100;

int phi[maxn+5];

void euler()
{
    for(int i=1;i<=maxn;i++) phi[i]=i;

    for(int i=2;i<=maxn;i+=2) phi[i]/=2;

    for(int i=3;i<=maxn;i+=2)
        if(phi[i]==i) // 保证了此时的 i 一定是第一次使用,避免重复 *(1-1/pi)
            for(int j=i;j<maxn;j+=i)
                phi[j]=phi[j]/i*(i-1); // 先进行除法是为了防止中间数据的溢出
}

Ps1:以上两种解法都是基于公式上:φ(n) = n * (1-1/p1) * (1-1/p2)....(1-1/pk),其中 p1、p2…pk 为 n 的所有素因子

Ps2:规律:5、[7,+无穷大] 的个数都是合数。其余要么是素数,要么是1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆克和他的代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值