ACM教程 - 强连通分量(Tarjan)

本文深入浅出地解析Tarjan算法,一种基于深度优先搜索(DFS)的高效算法,用于识别有向图中的强连通分量。通过实例演示,详细阐述了算法流程,包括DFS树的构建、节点参数设置、栈的使用以及如何识别并提取强连通分量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、讲解一

强连通定义:在有向图G<V,E>中,对于点集V'∈V, 点集中的任意两点都可达,则称V'为强连通。

孤立的一个点也是一个强连通分量。

在嵌套的多个环时 : {所有环上的点}为一个强连通分量( 最小环就是每个孤立点)注意一定是满足条件的最大点集。

 则上图中强连通分量有 {1},{2},{3},{7},{4,5,6}。


tarjan的过程就是dfs过程:

对图dfs一下,遍历所有未遍历过的点 ,会得到一个有向树,显然有向树是没有环的。(注意搜过的点不会再搜)

能产生环的 只有(指向已经遍历过的点)的边。

如图,只有红色绿色边有可能产生环。

对于深搜过程,我们需要一个栈来保存当前所在路径上的所有点(栈中所有点一定是有父子关系的

再仔细观察红边与绿边,首先得到结论:红边不产生环,绿边产生环

1、对于红边,连接的两个点3、7没有父子关系,这种边称为横叉边。横叉边一定不产生环。

2、对于绿边,连接的两个点6、4是父子关系,这种边称为后向边。环一定由后向边产生。

3、图中除了黑色的树枝边,一定只有横叉边和后向边。不存在其他种类的边


则以下考虑对于这两种边的处理和判断,首先深搜会搜到这样的图:

Stack = {1,2,3},3没有多余的其他边,因此3退栈,把3作为一个强连通分量。


再次深搜:

此时栈 Stack = {1,2,7}

发现红边指向了已经遍历过的点3 => 是上述的2种边之一,而3不在栈中 => 3点与7点无父子关系。

=> 该边为横叉边

=> 采取无视法

继而7点退栈 产生连通分量{7}

继而2点退栈 产生连通分量{2}


再次深搜:

此时 Stack = {1,4,5,6}

发现绿边指向了已经遍历过的点4 => 是上述的2种边之一

而4在栈中 => 4点与6点是父子关系

=> 该边为后向边

=> 4->6 的路径上的点都是环

int num[N], Top = 0;
int u = Stack.top(); 
while(u!=4){ num[Top++] = u; Stack.pop(); u = Stack.top();}
num[Top++] = u;

如此就能把Stack中 4->6 路径上的点转移到num数组里。

显然num数组中的点是一个连通分量。


实际情况可能更复杂:

出现了大环套小环的情况,显然我们认为最大环是一个强连通分量(即:{4,5,6,8} )。


二、讲解二

全网最详细tarjan算法讲解,我不敢说别的。反正其他tarjan算法讲解,我看了半天才看懂。我写的这个,读完一遍,发现原来tarjan这么简单!

tarjan算法,一个关于图的联通性的神奇算法。基于DFS(迪法师)算法,深度优先搜索一张有向图。注意!是有向图。根据树,堆栈,打标记等种种神(che)奇(dan)方法来完成剖析一个图的工作。而图的联通性,就是任督二脉通不通的问题。
了解tarjan算法之前你需要知道:
强连通,强连通图,强连通分量,解答树(解答树只是一种形式了解即可)

强连通(strongly connected): 在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通。

强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这个图,强连通图。

强连通分量strongly connected components):在一个有向图G中,有一个子图,这个子图每2个点都满足强连通,我们就叫这个子图叫做 强连通分量 [分量::把一个向量分解成几个方向的向量的和,那些方向上的向量就叫做该向量(未分解前的向量)的分量。

举个简单的栗子:

比如说这个图,在这个图中呢,点1与点2互相都有路径到达对方,所以它们强连通。

而在这个有向图中,点1 2 3组成的这个子图,是整个有向图中的强连通分量。

解答树:就是一个可以来表达出递归枚举的方式的树(图),其实也可以说是递归图。反正都是一个作用,一个展示从“什么都没有做”开始到“所有结求出来”逐步完成的“过程”!

tarjan算法,之所以用DFS就是因为它将每一个强连通分量作为搜索树上的一个子树。而这个图,就是一个完整的搜索树。
为了使这颗搜索树在遇到强连通分量的节点的时候能顺利进行,每个点都有两个参数。
1、DFN[]作为这个点搜索的次序编号(时间戳),简单来说就是 第几个被搜索到的。// 每个点的时间戳都不一样。
2、LOW[]作为每个点在这颗树中的,最小的子树的根,每次保证最小,like它的父亲结点的时间戳这种感觉。如果它自己的LOW[]最小,那这个点就应该从新分配,变成这个强连通分量子树的根节点。
Ps:每次找到一个新点,这个点 LOW[]=DFN[]。

而为了存储整个强连通分量,这里挑选的容器是,堆栈。每次一个新节点出现,就进站,如果这个点有 出度 就继续往下找。直到找到底,每次返回上来都看一看子节点与这个节点的LOW值,谁小就取谁,保证最小的子树根。如果找到DFN[]==LOW[]就说明这个节点是这个强连通分量的根节点(毕竟这个 LOW[]值是这个强连通分量里最小的)最后找到强连通分量的节点后,就将这个栈里,比此节点后进来的节点全部出栈,它们就组成一个全新的强连通分量。

先来一段伪代码压压惊:

tarjan(u){

  DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值

  Stack.push(u)   // 将节点u压入栈中

  for each (u, v) in E // 枚举每一条边

    if (v is not visted) // 如果节点v未被访问过

        tarjan(v) // 继续向下找

        Low[u] = min(Low[u], Low[v])

    else if (v in S) // 如果节点u还在栈内

        Low[u] = min(Low[u], DFN[v])

  if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根

  repeat v = S.pop  // 将v退栈,为该强连通分量中一个顶点

  print v

  until (u== v)

}

首先来一张有向图。网上到处都是这个图。我们就一点一点来模拟整个算法。

从1进入 DFN[1]=LOW[1]= ++index ----1
入栈 1
由1进入2 DFN[2]=LOW[2]= ++index ----2
入栈 1 2
之后由2进入3 DFN[3]=LOW[3]= ++index ----3
入栈 1 2 3
之后由3进入 6 DFN[6]=LOW[6]=++index ----4
入栈 1 2 3 6

之后发现 嗯? 6无出度,之后判断 DFN[6]== LOW[6]
说明6是个强连通分量的根节点:6及6以后的点 出栈。
栈: 1 2 3 
之后退回 节点3 Low[3] = min(Low[3], Low[6]) LOW[3]还是 3
节点3 也没有再能延伸的边了,判断 DFN[3]== LOW[3]
说明3是个强连通分量的根节点:3及3以后的点 出栈。
栈: 1 2 
之后退回 节点2 嗯?!往下到节点5
DFN[5]=LOW[5]= ++index ----5
入栈 1 2 5

Ps:你会发现在有向图旁边的那个丑的(划掉)搜索树 用红线剪掉的子树,那个就是强连通分量子树。每次找到一个。直接一剪子下去,半个子树就没有了。

结点5 往下找,发现节点6 DFN[6]有值,被访问过。就不管它。

继续5 往下找,找到了节点1 他爸爸的爸爸。DFN[1]被访问过并且还在栈中,说明1还在这个强连通分量中,值得发现。

Low[5] = min(Low[5], DFN[1]) 

确定关系,在这棵强连通分量树中,5节点要比1节点出现的晚。所以5是1的子节点。

So LOW[5]= 1

由5继续回到2 Low[2] = min(Low[2], Low[5])

LOW[2]=1;

由2继续回到1 判断 Low[1] = min(Low[1], Low[2]) 

LOW[1]还是 1

1还有边没有走过。发现节点4,访问节点4

DFN[4]=LOW[4]=++index ----6

入栈 1 2 5 4 

由节点4,走到5,发现5被访问过了,5还在栈里,

Low[4] = min(Low[4], DFN[5]) LOW[4]=5

说明4是5的一个子节点。

由4回到1

回到1,判断 Low[1] = min(Low[1], Low[4])

LOW[1]还是 1 。

判断 LOW[1] == DFN[1] 

诶?!相等了    说明以1为根节点的强连通分量已经找完了。

将栈中1以及1之后进栈的所有点,都出栈。

栈 :(鬼都没有了)

这个时候就完了吗?!你以为就完了吗?!

然而并没有完,万一你只走了一遍tarjan整个图没有找完怎么办呢?!

所以,tarjan的调用最好在循环里解决。

like 如果这个点没有被访问过,那么就从这个点开始tarjan一遍。

因为这样好让每个点都被访问到。

来一道裸代码。

输入:
一个图有向图。

输出:
它每个强连通分量。


input:
6 8
1 3
1 2
2 4
3 4
3 5
4 6
4 1
5 6

Output:
6
5
3 4 2 1

三、代码 

#include<bits/stdc++.h>
#include<cmath>

#define mem(a,b) memset(a,b,sizeof a)
#define ssclr(ss) ss.clear(), ss.str("")
#define INF 0x3f3f3f3f
#define MOD 1000000007

using namespace std;

typedef long long ll;

const int maxm=1001, maxn=1001;

struct node
{
    int v,next;
}edge[maxm<<1];

int dfn[maxn], low[maxn];
int Stack[maxn], head[maxn], vis[maxn], cnt, tot, idx;

void init()
{
    mem(head,-1);
    cnt=tot=idx=0;
}

void add(int x,int y)
{
    edge[++cnt].next=head[x];
    edge[cnt].v=y;
    head[x]=cnt;
}

void tarjan(int x) // 代表第几个点在处理,递归的是点
{
    dfn[x]=low[x]=++tot; // 新进点的初始化
    Stack[++idx]=x; // 进站
    vis[x]=1; // 表示在栈里
    for(int i=head[x]; i!=-1; i=edge[i].next)
    {
        if(!dfn[edge[i].v]) // 如果没访问过
        {
            tarjan(edge[i].v); // 往下进行延伸,开始递归
            low[x]=min(low[x],low[edge[i].v]); // 递归出来,比较谁是谁的儿子/父亲,就是树的对应关系,涉及到强连通分量子树最小根的事情
        }
        else if(vis[edge[i].v]) // 如果访问过,并且还在栈里
        {
            // 这里的 dfn[edge[i].v] ~ low[edge[i].v]
            low[x]=min(low[x],dfn[edge[i].v]); // 比较谁是谁的儿子/父亲。就是链接对应关系
        }
    }

    if(low[x]==dfn[x]) // 发现是整个强连通分量子树里的最小根
    {
        do
        {
            printf("%d ",Stack[idx]);
            vis[Stack[idx--]]=0; // 必须要写,否则的话,案例中的节点5应该是独个强连通分量,就变成和节点3 4 2 1一起输出了(由于节点6没清空引起)
        }
        while(x!=Stack[idx+1]); // 出栈,并且输出。
        puts("");
    }
}

int main()
{
    init();
    int n,m,x,y;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++) scanf("%d%d",&x,&y), add(x,y);
    for(int i=1;i<=n;i++)
        if(!dfn[i]) tarjan(i); // 当这个点没有访问过,就从此点开始。防止图没走完

    return 0;
}

解释1 ==> low[x]=min(low[x],low[edge[i].v])

当vis成立时,发现下个点可能是最小根点v的存在,并且该点x也没有其他边了,更新low[x]=low[v],回溯时,传递更新x的父亲节点为可能最小根的low[可能最小根v]。如果x还有其他边,以及此时的可能最小根点v2比上次的v还要小,则覆盖。

解释2 ==> if(low[x]==dfn[x])

1、直到回溯到真正的最小根为止,输出该环。
2、避免了该环的其他非最小根的点单飞出去。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆克和他的代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值