一、引言
1.1 研究背景与意义
在当今数字化时代,医疗领域积累了海量的数据,涵盖电子病历、医学影像、基因序列、临床检验结果等多源异构信息。这些数据蕴含着疾病发生发展、治疗反应、疫情传播等规律,为医疗趋势预测提供了数据基础。准确的医疗趋势预测能辅助医疗机构提前调配资源,如预测传染病流行趋势可指导药品储备、病床分配;在慢性病管理方面,预测病情恶化风险能实现早期干预,改善患者预后。
EpiForecast和DeepHealthNet模型在医疗趋势预测领域极具代表性。EpiForecast聚焦传染病传播趋势预测,通过整合流行病学数据、人口流动信息、气候因素等,利用先进机器学习算法挖掘数据关联,为疫情防控提供精准预测,助力公共卫生部门制定防控策略,如社交距离管控、疫苗接种规划等。DeepHealthNet针对慢性疾病,基于深度学习框架,分析患者长期健康数据,包括连续血糖监测、血压心率动态变化等,精准预测疾病进展,辅助医生为患者定制个性化治疗方案,提升慢性病管理效率与质量,减轻社会医疗负担。深入探究二者编程实现,对推动精准医疗、优化医疗资源配置、提升全民健康水平意义重大。
1.2 研究目的与创新点
本研究旨在通过编程实现EpiForecast和DeepHealthNet模型,并