系统提示学习(System Prompt Learning)在医学编程中的初步分析与探索

在这里插入图片描述


一、SPL 的核心定义

系统提示学习(SPL)是一种通过策略性设计输入提示(Prompts),引导大型语言模型(LLMs)生成特定领域行为与输出的方法。其核心在于不修改模型参数,而是通过上下文工程(Context Engineering)动态控制模型响应,使其适配复杂任务需求。

与微调(Fine-tuning)的对比

特征 微调 系统提示学习(SPL)
参数修改 需要调整模型权重 无需修改模型内部参数
灵活性 任务特定,灵活性低 动态适应多场景,灵活性高
合规性 可能涉及敏感数据训练</
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allen_Lyb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值