一、SPL 的核心定义 系统提示学习(SPL)是一种通过策略性设计输入提示(Prompts),引导大型语言模型(LLMs)生成特定领域行为与输出的方法。其核心在于不修改模型参数,而是通过上下文工程(Context Engineering)动态控制模型响应,使其适配复杂任务需求。 与微调(Fine-tuning)的对比: 特征 微调 系统提示学习(SPL) 参数修改 需要调整模型权重 无需修改模型内部参数 灵活性 任务特定,灵活性低 动态适应多场景,灵活性高 合规性 可能涉及敏感数据训练</