Nature子刊综述|人工智能增强型超声心动图在心血管疾病管理中的应用

小罗碎碎念

这篇发表于《Nature Reviews Cardiology》的综述文章系统探讨了人工智能在超声心动图领域的应用现状与未来方向,对医学AI研究者具有重要参考价值。

https://doi.org/10.1038/s41569-025-01197-0

文章详细分析了AI在超声心动图工作流各环节的整合,包括图像采集、分析与解读,重点阐述了自动化测量、疾病模式识别及新表型发现等核心应用,同时通过对比多步骤模型与端到端模型的技术路径,揭示了不同AI架构在超声心动图分析中的优势与局限,如多步骤模型的可解释性与端到端模型对大规模数据的依赖。

图1|超声心动图中人工智能方法概览

文章深入探讨了AI增强型超声心动图在疾病检测中的突破,尤其在心肌病、瓣膜性心脏病、心力衰竭等领域的临床应用。

研究表明,深度学习模型能识别人类难以察觉的细微特征,例如通过2D图像检测心脏淀粉样变性(AUC 0.87)和肥厚型心肌病(AUC 0.93),且在主动脉瓣狭窄等瓣膜疾病的分级中展现出接近完美的性能(AUC 0.94-0.98)。

图2|人工智能在超声心动图工作流程不同环节的应用。

此外,AI在左心室功能量化(如射血分数、整体纵向应变)中的准确性与重复性已得到多项临床研究验证,为疾病筛查与监测提供了新工具。

在技术落地与未来创新方面,文章强调了构建可信AI系统的关键要素,包括严格的验证流程、合规性管理及伦理标准,并提出了七项指导原则。

七项指导原则

同时,文章指出当前面临的挑战,如数据多样性不足、模型偏见及临床整合障碍,进而展望了基础模型、自主超声心动图及可穿戴设备等前沿方向。

对于医学AI研究者而言,文中对临床需求与技术瓶颈的分析,以及对多模态融合、少样本学习等技术的潜在应用探讨,为后续研究提供了清晰的方向指引。


交流群

欢迎大家加入【医学AI】交流群,本群设立的初衷是提供交流平台,方便大家后续课题合作。

目前小罗全平台关注量111,000+,交流群总成员1800+,大部分来自国内外顶尖院校/医院,期待您的加入!!

由于近期入群推销人员较多,已开启入群验证,扫码添加我的联系方式,备注姓名-单位-科室/专业,即可邀您入群


罗小罗团队

我们是一支以国内外硕博为主的学生团体,覆盖医学AI主流研究领域;团队现有50余人,持续欢迎新的小伙伴加入!

团队官网上传了大量优质的学习资料,包括但不限于每次免费公开课的回放,顶刊复现教程等等!

感兴趣的可以扫码或者点击链接访问团队的官网:https://www.lxltx.site/


一、引言

超声心动图是心血管成像的基石,可对心脏结构和功能进行实时、无创评估。然而,超声心动图的采集和解读耗时、依赖专家且容易出现变异性 。

过去十年超声心动图的进展包括新技术(如应变成像)和新的临床应用(如心脏肿瘤学),这对成像和解读提出了更专业的要求,导致超声心动图检查时间更长、更复杂。

随着心血管疾病负担的增加,当前超声心动图工作流程的局限性导致了劳动力短缺、超声检查人员受伤以及患者等待时间延长 。

人工智能(AI)技术为应对这些挑战提供了颇具前景的解决方案,推动了超声心动图检查的执行和解读方式发生范式转变 5{}^{5}5


尽管医学成像中的人工智能并非全新事物,但其在超声心动图中的应用仍面临一些独特挑战。

典型的超声心动图检查并非单一静止图像,而是由从胸部不同换能器位置采集的约70个视频片段组成,利用多个二维横截面图像近似三维运动物体,不同视频之间存在差异,且每个视频内逐搏也存在差异。

人工智能的关键进展(方框1)为过去十年中人工智能增强的超声心动图定量和解读铺平了道路。机器学习作为人工智能的核心技术,使系统能够从数据中学习并改进,这与遵循固定指令的传统编程不同 6{}^{6}6

深度学习是机器学习的一种高级形式,它利用受人类大脑启发的神经网络来处理诸如文本、图像和视频等复杂数据。这些模型可以使用监督学习进行训练,即标记数据指导算法,也可以使用无监督学习,即从未标记数据中发现模式(图1)。


深度学习在超声心动图中的开创性应用包括2012年对超声心动图图像中左心室的自动分割 7{}^{7}7 以及能够从图像和视频中准确分类超声心动图标准视图的卷积神经网络模型的开发 8−10{}^{8 - {10}}810

这些进展为后续人工智能应用奠定了基础,以便在超声心动图图像中分离特定的心脏结构,如腔室、瓣膜和心肌,并对图像进行后续解读和测量 11{}^{11}11

正如人工智能正在彻底改变心电图检查 12{}^{12}12 一样,将其整合到超声心动图中可以使高质量、高效的超声心动图检查更加普及。

事实上,人工智能的快速发展正在通过提高图像采集和分析的标准化、准确性和效率,改善疾病检测并促进心血管护理,从而改变超声心动图。

人工智能方法可以应用于超声心动图的多个层面,包括对结构化报告中的表格数据进行数学建模以及自然语言处理,以从非结构化文本中提取数据。

在本综述中,作者探讨了超声心动图中人工智能的当前状态,重点关注使用超声心动图图像数据的人工智能应用(图2),并强调其临床应用、挑战和未来方向。


二、人工智能的关键进展及其在超声心动图中的应用

20世纪30年代,英国数学家艾伦·图灵(Alan Turing)的开创性理论为现代计算和人工智能奠定了基础 (AI)143{\left( AI\right) }^{143}(AI)143

随着 AI{AI}AI 的进步,以及处理能力的提升和成本的降低,人工智能如今正变得“大众化”,使其更容易获得 144,145{}^{{144},{145}}144,145

然而,开发安全有效的医疗用人工智能应用仍然需要大量的专业知识和资源。

此外,临床医生必须理解人工智能原理,包括机器学习、深度学习和模型验证,以确保安全有效地实施 128,146{}^{{128},{146}}128,146

机器学习是人工智能的核心技术,它使系统能够从数据中学习并改进,这与遵循固定指令的传统编程不同 6{}^{6}6 。这种适应性在医学成像中尤为重要,因为医学成像数据复杂多样。

例如,机器学习模型可以分析超声心动图图像中的每个像素,评估其与周围像素的关系,并整合图像序列中的模式。


深度学习是机器学习的一种高级形式,它利用受人类大脑启发的神经网络来处理复杂数据,如图文、图像和视频。

这些网络由相互连接的层组成,这些层处理数据的不同方面,并通过迭代调整网络权重来学习 16,147{}^{{16},{147}}16,147

深度学习主要有三种方法:

  • 监督学习,即算法通过分析已知答案的数据来学习,例如在超声心动图图像中识别左心室心肌。在这种方法中,模型自行学习图像中的哪些特征与特定结构相关。监督学习是人工智能超声心动图中使用最广泛的方法。
  • 无监督学习,即算法在没有预定义答案或标签的情况下探索数据中的模式。尽管无监督学习在发现新的模式和隐藏结构方面很有前景,但其应用极具挑战性,尤其是因为难以解释其预测结果并理解其潜在推理。
  • 强化学习,算法通过试错来改进,正确决策会得到奖励,错误决策会受到惩罚。这种方法鼓励系统随着时间的推移确定最佳策略,以最大化总体奖励 146,148{}^{{146},{148}}146,148

尽管深度学习方法很强大,但在其应用中仍存在挑战。一个特别的陷阱是不确定性的管理,因为即使输入数据不足,这些模型也常常会产生预测结果。

此外,深度学习模型严重依赖训练数据,尤其是标签的准确性,无论是解剖结构还是疾病类别。这种依赖可能会传播训练数据集中存在的偏差或错误,从而可能导致错误的预测。


生成式人工智能是深度学习的一个最新扩展,它通过识别现有数据集中的模式来创建新数据,如图文或图像。

与自然语言处理相结合,大型语言模型有潜力实现任务自动化,例如总结超声心动图报告、提出诊断建议和推荐治疗方案,从而 简化超声心动图工作流程 149−151{}^{{149} - {151}}149151

然而,大型语言模型也有局限性。一个关键挑战是它们倾向于产生不可靠的预测,通常被称为“人工智能幻觉”,即系统生成听起来合理但不正确的信息。

此外,大型语言模型需要在多样且具有代表性的数据集上进行大量训练,以尽量减少偏差并确保通用性,而且它们提供的人工监督有限,这引发了对临床决策中问责制的担忧。


基础模型通过自我监督在大型数据集上进行训练,是深度学习的一项最新进展。

与传统的特定任务模型不同,基础模型具有高度的适应性,可以针对各种应用进行微调,在各个领域都具有通用性。

例如,使用多模态学习(例如文本和成像数据),经过训练的模型可以分析超声心动图数据并预测诸如射血分数等变量,而无需针对该任务进行专门训练 129,152,153{}^{{129},{152},{153}}129,152,153

然而,这项技术仍处于早期阶段,并且与传统的“黑匣子”模型一样,基础模型在其特征提取方法上往往缺乏透明度 25{}^{25}25 。虽然多步骤方法在每个阶段都提供透明度,但端到端模型对于临床医生来说可能更难解释和信任。

开发通用的端到端模型的另一个挑战是,它们比多步骤模型需要更多的训练数据,通常需要数万张带标签的图像。


三、超声心动图图像分析中的人工智能

人工智能有潜力改变超声心动图的工作流程,从图像采集、分析到解读、报告和临床决策(图2)。

传统工作流程中的每个步骤都劳动强度大且耗时,依赖操作员导致评估存在很大差异 1−3{}^{1 - 3}13

人工智能辅助图像分析具有重要的潜在益处,如提高精度、减少用户差异并大幅节省时间 13−15{}^{{13} - {15}}1315

几种基于人工智能的全自动测量方法已经商业化,并且该领域正在迅速扩展。


3-1:图像分析的多步骤模型与端到端模型

人工智能辅助图像分析中出现了两种主要方法:多步骤模型和端到端模型 16{}^{16}16 (图1)。

多步骤模型使用专用神经网络依次解决特定任务

例如,已经开发出全自动方法,首先对相关图像视图进行分类,然后识别收缩末期和舒张末期,进行心肌分割,标记心脏腔室,最后量化心脏结构和功能 11,13,15,17−21{}^{{11},{13},{15},{17} - {21}}11,13,15,1721

可视化每个步骤的预测结果,如视图和结构的识别以及进行测量,可以提高可解释性,这是获得信任和临床应用的关键。

可解释人工智能的进展旨在通过使模型的内部过程更易于理解来建立对这些模型的信任 22{}^{22}22


相比之下,端到端模型通常被称为“黑匣子”模型,直接从图像预测结果,无需中间步骤 23−26{}^{{23} - {26}}2326

例如,开发并训练了一种算法,可从超过50,000项超声心动图研究的数据库中自动估计左心室(LV)射血分数(EF),而无需进行心内膜描绘(即算法未由开发者指导心内膜边界应如何追踪)。

相反,该算法被允许从数千张图像、特征和视觉模式中学习,以根据人类读者使用传统方法获得的参考值来估计EF。


3-2:左心室收缩功能

迄今为止,实现左心室收缩功能的量化自动分析一直是人工智能在超声心动图领域最为成功的应用之一(表1)。

多步骤13,15,17{}^{{13},{15},{17}}13,15,17模型和端到端25{}^{25}25模型都已用于左心室射血分数(LVEF)的计算。这些方法已证明与专家的参考测量结果具有良好的一致性18,21{}^{{18},{21}}18,21,与人工读数相比,具有更好的可重复性且变异性更小13,15,18{}^{{13},{15},{18}}13,15,18

二维超声心动图中的人工智能算法也已证明与三维左心室容积的参考测量结果以及EF27{\mathrm{{EF}}}^{27}EF27具有良好的一致性。

此外,人工智能自动化可以在扫描过程中提供实时结果,还能将执行和分析常规超声心动图所需的时间减少70%至80%,且不影响准确性15,28{}^{{15},{28}}15,28


大多数人工智能方法使用标记视图来估计左心室射血分数,例如心尖四腔心视图和两腔心视图15,18,25,27,29,30{}^{{15},{18},{25},{27},{29},{30}}15,18,25,27,29,30,或者仅使用四腔心视图21,23,31{}^{{21},{23},{31}}21,23,31

然而,这些视图并非总是可用,或者图像质量不足,从而限制了估计的准确性。一种更稳健的方法可能涉及在更广泛的视图上训练的模型。

一个在12648次检查上训练的模型,自动识别胸骨旁和三个心尖长轴视图,并根据可用视图估计左心室射血分数,其R2{R}^{2}R2为0.84,平均绝对误差为4.0%{4.0}\%4.0%,这使得该模型比以前的人工智能方法更能抵御缺失或次优图像的影响32{}^{32}32


人工智能模型在无需任何人工干预的情况下对左心室整体纵向应变进行量化时也很准确,这与传统使用的半自动方法不同。

一种基于深度学习的全自动多步骤方法从心尖视图计算整体纵向应变,显示出与传统半自动方法在多种病理情况下具有极好的相关性测量结果(皮尔逊相关系数R=0.93)33R = {0.93}{)}^{33}R=0.93)33)。

值得注意的是,对于监测心脏功能(如接受心脏毒性治疗的癌症患者)至关重要的重复检查之间整体纵向应变的最小可检测变化,从5.5降至3.7(参考文献34)。

使用一种新颖的点跟踪深度学习技术,区域应变测量的可重复性得到改善,与商业半自动软件的整体纵向应变测量的观察者间可重复性相当,计算时间为<1  s< 1\mathrm{\;s}<1s,使得常规区域应变评估成为现实35{}^{35}35

此外,左心室应变测量的人工智能自动化已扩展到包括对各种病理情况(包括心力衰竭(HF)和心肌梗死)患者的准确量化19{}^{19}19

尽管一些模型估计整体纵向应变的准确性与人类专家相当(相关性为0.85,中位数绝对误差为2.0个整体纵向应变百分比单位)36{}^{36}36,但其他模型与手动测量的一致性则较为一般(相关性为0.56,偏差为-3.3%)37{}^{37}37


3-3:腔室尺寸的量化

左心室尺寸的量化在心力衰竭、瓣膜性心脏病、先天性心脏病或心肌病患者的指南指导随访、预后评估和治疗决策中起着至关重要的作用。

在64,028张超声心动图上训练的基于深度学习的多步骤模型在预测左心室舒张末期直径(平均绝对误差 2.09  mm{2.09}\mathrm{\;{mm}}2.09mm)、左心室收缩末期直径(平均绝对误差 2.04  mm{2.04}\mathrm{\;{mm}}2.04mm)、室壁厚度(平均绝对误差 0.99  mm{0.99}\mathrm{\;{mm}}0.99mm0.93  mm{0.93}\mathrm{\;{mm}}0.93mm)以及左心房前后径(平均绝对误差 2.52  mm)43{2.52}\mathrm{\;{mm}}{)}^{43}2.52mm)43)方面显示出良好的准确性。

在来自不同患者群体的胸骨旁长轴图像中使用端到端模型也取得了可比的准确性 44,45{}^{{44},{45}}44,45

人工智能在估计腔室容积方面也显示出有前景的结果。在600名个体(包括心力衰竭患者)中训练的多步骤模型显示,人工智能与专家对左心室舒张末期容积、左心室收缩末期容积和左心房收缩末期容积的测量之间具有很强的一致性(组内相关性分别为0.83、0.85和0.85 )18{)}^{18})18)。

自动测量与人工测量之间的变异性低于人与人之间的变异性(个体等效系数分别为 -0.81、-0.79和 -0.61)。


3-4:左心室舒张功能

尽管左心室舒张功能的临床评估是超声心动图中的一项关键任务,但它具有挑战性,并且受到观察者相关变异性的阻碍 3{}^{3}3

在舒张功能评估的图像分析中实施人工智能模型的具体挑战与频谱多普勒成像的使用有关,包括信噪比差、最佳波束对准,或自动识别多普勒采样的位置和关键心脏事件的时间。

已经开发出一些模型,可直接根据超声心动图图像评估左心室舒张功能,这些模型能够进行自动测量并整合结果,对舒张功能进行分级,而无需人工输入 20,46−50{}^{{20},{46} - {50}}20,4650

例如,一种多步骤深度学习方法在一个大型外部数据集中识别出E/A E/e′E/{e}^{\prime }E/e 比值≥1.3的患者,曲线下面积(AUC)为0.91 13{}^{13}13

在另一项研究中,一个基于多步骤深度学习的模型使用B模式和多普勒图像进行训练,以计算和整合左心室射血分数、左心房容积和多普勒参数,并在舒张功能的算法分类中显示出0.88的AUC 20{}^{20}20

另一种整合多个视图的自动舒张参数的多步骤方法,与基于指南的舒张功能障碍评估的一致性达到94%,并显示出预后价值,全因死亡和心力衰竭相关住院的复合结局的调整后风险比为3.03(95%置信区间为1.16至9.14) 50{}^{50}50


3-5:左心房功能

使用半自动斑点追踪软件对左心房应变进行量化,为广泛的心脏疾病提供了有价值的诊断和预后信息 51,52{}^{{51},{52}}51,52

然而,基于人工智能的测量方法的探索较少。一个在30000例检查的数据集上训练并进行外部自动舒张评估测试的多步骤模型,显示出基于人工智能的左心房储存应变测量与手动测量之间具有高度相关性 (r=0.87(r = {0.87}(r=0.87 ,平均绝对误差 3.1%)50{3.1}\% {)}^{50}3.1%)50

在一项评估舒张功能的研究中,观察到基于人工智能估计的左心房应变与手动测量之间具有良好的一致性(偏差<1%,一致性界限为7%至8%) 49{}^{49}49 。基于人工智能的左心房应变测量也已被证明是心力衰竭患者肺毛细血管楔压的可靠预测指标,其性能优于 E/e′E/{e}^{\prime }E/e 和整体纵向应变 53{}^{53}53

将人工智能应用于左心房时需要解决的具体挑战包括左心房的解剖复杂性和薄壁、对图像伪影的敏感性以及现有数据集中缺乏标准化的左心房聚焦成像视图。


3-6:右心室功能

尽管右心室(RV)功能障碍的预后重要性已得到充分证实,但很少有研究关注基于人工智能的右心室功能量化 54{}^{54}54

已经训练了两个端到端模型,可直接从二维四腔图像预测右心室射血分数,与从三维超声心动图图像和磁共振成像得出的右心室射血分数相比,平均绝对误差分别为5.54%和7.67个百分点 55,56{}^{{55},{56}}55,56

此外,基于深度学习的模型在右心室面积变化分数、三尖瓣环平面收缩期位移和右心室游离壁应变的量化方面显示出有前景的结果 18,57{}^{{18},{57}}18,57


四、人工智能增强超声心动图在疾病检测中的应用

深度学习增强的超声心动图为心脏病检测提供了变革性能力(表2)。

通过自动编码和整合图像序列中的大量信息,这些系统可以识别数据中人类难以检测到的复杂特征,如心脏回声、壁运动和瓣膜功能的细微变化,以识别指示特定疾病的模式。

在这个领域,端到端方法和无监督学习可能会非常强大。


4-1:心肌病

心肌病涵盖了一系列影响心肌的疾病。

鉴于心肌病在疾病表现上与更常见疾病相似,检测心肌病可能具有挑战性。在疾病早期阶段,这种挑战尤为突出,此时超声心动图异常可能很轻微,因此批准疗法的应用往往会延迟 58{}^{58}58

此外,鉴于治疗策略差异很大,区分各种类型的心肌病至关重要。

超声心动图通常是初步怀疑和识别心肌病的主要工具,尽管推荐使用多模态成像,但其可用性往往有限 59{}^{59}59


2017年的一项具有里程碑意义的研究证明了全自动超声心动图算法检测心肌病的潜力 11{}^{11}11

一种仅基于二维图像训练的深度学习方法识别肥厚型心肌病的曲线下面积(AUC)为0.93,识别心脏淀粉样变性的AUC为0.87(参考文献11)。

值得注意的是,人工智能预测的疾病概率与左心室质量等关键疾病指标显示出中等相关性(r=0.23−0.36r = {0.23} - {0.36}r=0.230.36),这表明该算法除了标准测量外,还捕捉到了图像的其他信息方面。后续研究证实了这些发现。

例如,一项研究报告肥厚型心肌病的AUC为0.90,心脏淀粉样变性的AUC为0.94,在检测不同形式的左心室肥厚方面表现近乎完美,AUC达到0.98(参考文献60)。

一种用于检测心肌病的新颖且具有临床前景的方法是结合来自世界各地医院都能廉价且容易获得的检查手段的信息。这种方法对于心脏淀粉样变性患者尤为重要,因为需要先进的检查,如闪烁扫描、心脏磁共振成像、血液检查或心脏活检来确诊 61{}^{61}61

因此,有前景的是,一种无需人工解读的人工智能模型已被证明可以通过结合心电图和超声心动图准确检测心脏淀粉样变性,包括转甲状腺素蛋白淀粉样变性和轻链淀粉样变性 62,63{}^{{62},{63}}62,63

未来除了传统的心脏结构和功能量化外,利用模式识别来研究心肌罕见疾病的研究可能会带来更早的诊断和更好的疾病管理。


区分心肌病患者和健康志愿者是人工智能辅助超声心动图的一项基本测试。

然而,还需要进行更多与临床相关的比较。例如,区分运动员心脏的肥厚型心肌病和生理性肥厚可能具有挑战性。一种机器学习算法被证明能够区分生理性和病理性心脏肥厚重塑 64{}^{64}64

该算法从运动员心脏肥厚中识别肥厚型心肌病的灵敏度达到87%,考虑年龄差异后升至96%。同样,未来的研究还应专注于区分在超声心动图上可能看起来相似的情况,例如与心脏壁增厚相关的情况,包括心脏淀粉样变性、法布里病和高血压性心脏病。


4-2:心脏瓣膜病

心脏瓣膜病需要精确的诊断和分级工具来指导治疗策略。

多普勒成像,包括彩色多普勒、连续波和脉冲波,对于评估瓣膜功能至关重要,而二维超声心动图视频则用于评估瓣膜结构和运动。

理想的临床决策支持工具应整合这些不同的数据流进行综合分析。该工具不仅应识别心脏瓣膜病的存在,还应评估其严重程度。在测量结果不一致的情况下,例如,当一项测量表明瓣膜病严重而另一项仅表明为中度疾病时,软件应呈现每次测量中使用的相关图像和描记图,以协助决策。

深度学习的进展导致了能够诊断和量化常见瓣膜疾病的算法的开发。基于人工智能对主动脉瓣多普勒信号的分析在匹配人类对速度(r=0.97)\left( {r = {0.97}}\right)(r=0.97)和压力梯度(r=0.94)\left( {r = {0.94}}\right)(r=0.94)的测量方面显示出很高的准确性,从而能够准确检测和量化主动脉瓣狭窄65{}^{65}65

一项精心设计的使用自监督对比预训练的研究表明,通过仅分析二维胸骨旁长轴视频而不进行多普勒成像,一种深度学习算法能够在代表一般筛查人群的内部和外部数据集中准确检测严重主动脉瓣狭窄,曲线下面积(AUC)为0.94 - 0.98 66,67{}^{{66},{67}}66,67

这种无需多普勒的方法也已被证明在没有多普勒的二维成像数据集中进行主动脉瓣狭窄筛查是可行的,能够以0.75的AUC准确区分无、轻度或轻度至中度主动脉瓣狭窄与更严重(中度或重度)疾病(参考文献68)。这种方法显示出利用基于深度学习的超声心动图技术进行心脏瓣膜病床旁筛查的前景。


二尖瓣反流通常可以通过彩色多普勒成像直观检测到,但由于需要整合多种超声心动图模式,量化具有挑战性。

因此,二尖瓣反流评估中观察者间的变异性经常发生,导致严重二尖瓣反流的分类不一致,以及确定最佳干预时机的准确性降低。

已经开发出用于通过心尖视图评估二尖瓣彩色多普勒图像来量化二尖瓣反流严重程度的深度学习算法。在大量研究和队列中,此类算法已证明能够准确分类二尖瓣反流的严重程度,识别中度或重度二尖瓣反流的AUCs >0.90> {0.90}>0.90 69,70{}^{{69},{70}}69,70。这种仅使用彩色多普勒评估的简单方法在二尖瓣反流的自动筛查方面具有相当大的潜力。

此外,人工智能对近端等速表面积的自动评估已被证明是可行的,基于深度学习的模型在全自动评估方面与参考测量显示出很强的一致性(组内相关系数为0.83)


4-3:心力衰竭

心力衰竭是一种临床综合征,其特征为特定的体征和症状,并通过影像学检测到的心脏异常证据得到证实,而金标准诊断测试仍然是有创测量左心室充盈压升高 75{}^{75}75

超声心动图检测左心室功能障碍,在多项研究中已被证明人工智能能够准确进行(表1),这是诊断临床心力衰竭的一个先决条件,但仅凭其自身并不充分。

例如,使用多步人工智能模型,在所有人群中,通过左心室射血分数(LVEF)<40%< {40}\%<40% 定义的收缩功能障碍和通过 E/e′>13E/{e}^{\prime } > {13}E/e>13 定义的舒张功能障碍,其AUC为0.90 - 0.92时能够可靠地检测出来 13{}^{13}13

通过使用经过训练以识别射血分数保留的心力衰竭(HFpEF)的端到端方法,仅分析单个心尖四腔视频片段的算法可以诊断HFpEF,其AUC为0.95 - 0.97(参考文献76)。这个人工智能模型能够正确地重新分类74%的参与者,这些参与者根据HFA - PEFF和H2FPEF临床评分先前被分层为具有HFpEF的中度风险。

此外,这个HFpEF人工智能模型的第二个版本成功地预测了心力衰竭相关住院的风险,其预后价值超过了临床评分 77{}^{77}77 。仅基于深度学习的应变分析在识别临床心力衰竭患者方面已显示出有前景的结果,对于射血分数降低的心力衰竭(HFrEF)(AUC为0.98)比射血分数保留的心力衰竭(HFpEF)(AUC为0.82)具有更高的准确性 19{}^{19}19

然而,需要更多数据来检测通过有创测量定义的心力衰竭 53{}^{53}53


4-4:缺血性心脏病

在疑似心肌梗死的诊断评估中,超声心动图是检测左心室局部壁运动异常最常用的非侵入性成像工具。

通过超声心动图准确识别壁运动异常需要训练有素且经验丰富的医生,因为这些异常可能很细微。然而,基于深度学习的算法在检测疑似急性心肌梗死患者标准心尖视图中的局部壁运动异常方面已显示出前景。

与专家读者相比,一种算法检测局部壁运动异常的AUC,床边超声心动图为0.85,标准超声心动图为0.90 78{}^{78}78 。其他关于基于深度学习从心尖视图检测局部壁运动异常的研究也得出了类似结果 19,24,79{}^{{19},{24},{79}}19,24,79

人工智能模型也已应用于负荷超声心动图,以评估疑似冠心病患者的缺血情况。在PROTEUS试验 80{}^{80}80 中,接受负荷超声心动图检查的参与者被随机分配接受人工智能增强的图像解读或标准治疗,但人工智能辅助决策并未显示出非劣效性。

然而,发现人工智能负荷超声心动图对经验较少的临床医生以及已知图像难以解读的患者亚组有益。人工智能模型区分心肌梗死与诸如应激性心肌病等模仿病症的能力也已得到研究。在一项使用实时人工智能方法对超声心动图进行全自动解读的研究中,该系统区分这两种病症的AUC为0.79,比心脏病专家的分类更准确 81{}^{81}81


4-5:肺动脉高压

呼吸困难是超声心动图检查的常见指征,因此需要准确评估肺动脉压力。

肺动脉压力通常通过三尖瓣反流速度的多普勒成像来估计,而这可以通过人工智能超声心动图准确量化13{}^{13}13。然而,由于三尖瓣反流束不足或图像质量不佳,可靠的测量结果并非总是可得。

肺动脉压力升高还可导致右心室扩大和功能障碍,这可在二维超声心动图图像上检测到。仅通过在心尖四腔视图图像上训练人工智能模型,肺动脉高压的检测准确率可达0.85(参考文献11)。

还开发了其他人工智能算法来对肺动脉高压进行分类,甚至区分毛细血管前性与毛细血管后性高血压,其预测准确率显著高于基于指南的超声心动图评估82,83{}^{{82},{83}}82,83


五、人工智能在超声心动图中的临床应用

人工智能增强超声心动图的潜在应用非常广泛,从全科医生的简单筛查到心脏病的高级监测以及临床试验中的结果测量(图3)。

5-1:提高效率和标准化

在不久的将来,人工智能超声心动图可能产生的最具变革性的影响或许将是耗时且易出错的手动任务的自动化以及测量标准化的改进。

这些方面可以提高诊断效率和准确性,确保各机构和操作人员之间的一致性,带来更及时、精确的治疗干预,最终改善患者预后(b0)。

一项随机试验通过为超声医师交替安排手动操作日和人工智能辅助日,评估了基于人工智能的自动分析在临床超声心动图工作流程中的整合情况(b1)。人工智能系统将每日检查次数从14.1次增加到16.7次,减少了检查时间,并且每项研究分析的参数数量增加了两倍。

尽管工作量增加,但超声医师报告在人工智能辅助日的疲劳程度较低,这可能是由于重复性任务的自动化。观察到人工智能生成的数据具有很高的准确性,人工智能输出与专家认可的结果(如左心室射血分数测量)之间具有很强的一致性(组内相关系数为0.92)。

非随机研究也表明,测量存储图像的时间大幅减少(b2)。


5-2:实时人工智能决策支持系统

人工智能超声心动图的一个关键优势是能够在图像采集的同时进行测量。当整合到超声心动图实验室的工作流程中时,这种能力可以提高效率并有助于使测量标准化。

例如,在扫描过程中检测到异常的左心室射血分数可能会促使超声医师拍摄一系列图像(如应变图像,以识别淀粉样变或用于左心室不同步的区域应变),创建“动态”或“自适应 ”方案,以确保获得足够的诊断图像而不过度成像。

当患者在超声心动图实验室时即可生成完整报告。这种能力不仅限于标准的量化,如容积和多普勒信号测量,还可能改善疾病监测、监控和预后评估。通过分析以前的超声心动图检查,人工智能算法可以快速检测变化并向临床医生提供实时警报。

此外,对存储图像的回顾性分析可用于提供质量反馈和客观的质量比较,这对于具有多个地点的大型医疗系统、核心实验室和认证机构可能特别有帮助。


5-3:心血管疾病筛查

在预防性医疗保健中,心脏病筛查仍然是一个具有挑战性的领域。

尽管筛查对于早期发现和干预具有巨大潜力,这可以极大地改变患者的预后,但它也带来了与假阳性结果和过度治疗相关的风险。

人工智能辅助超声心动图可能通过提高图像分析的精度和可靠性,以及提供用于识别肉眼无法检测到的细微风险迹象的工具,来完善心脏病学的这一方面。

正在进行的研究,如SYMPHONY试验(b0),正在研究人工智能辅助超声心动图在高危人群中筛查心力衰竭的疗效。该试验以及其他试验正在探索人工智能在识别可指导及时管理策略的早期疾病标志物方面的边界。


六、人工智能辅助即时超声(POCUS)

人工智能辅助的床旁超声心动图检查已被证明,新手医护人员能够切实可行地用于测定床旁左心室射血分数(LVEF)97{}^{97}97,在比较使用床旁超声心动图进行的自动左心室射血分数测量与使用高端扫描仪的参考双平面圆盘容积法时,二者具有良好的相关性且偏差较小98{}^{98}98

最近的研究表明,新型深度学习模型有潜力利用床旁超声心动图图像对多种心肌病进行筛查和亚型分型99{}^{99}99

这些进展为床旁超声心动图检查开辟了新途径,如通过家庭超声心动图和居家医院模式进行远程监测,但仍需更多研究。


6-1:超声心动图的普及

随着人工智能驱动软件的出现,包括全科医生和护士在内的、成像经验有限的医护人员能够在非传统环境中进行基本的超声心动图筛查39,40{}^{{39},{40}}39,40

在一项针对疑似心力衰竭患者的研究中,设计了一种由非专科医生进行人工智能自动化手持超声心动图检查的数字诊断途径,以加快关键诊断测试的获取速度100{}^{100}100

该研究表明,人工智能对手持式和标准推车式超声心动图的自动化分析与专家人工分析具有可互换性。值得注意的是,这种数字途径减少了诊断检查的等待时间,使治疗能够更早开始,并减少了住院次数。


在医疗资源和专业培训往往有限的低收入和中等收入国家,人工智能增强型超声心动图可能具有特别大的变革性。

任务转移(即将某些医疗任务委托给专业性较低的医护人员)以及便携式设备的开发,可以大幅改善诊断,甚至不仅将这些技术带到床边,还能带到社区居民家中。

例如,一项研究表明,配备了用于获取和解读心脏超声图像的深度学习驱动电子决策支持工具的突尼斯护士,能够在患者家中诊断射血分数降低的心力衰竭(HFrEF)患者,其准确性与诊所中训练有素的心脏病专家相似101{}^{101}101。在乌干达坎帕拉,事实证明,由人工智能引导的彩色多普勒超声心动图对非专家筛查风湿性心脏病是可行的,特别是用于评估二尖瓣102{}^{102}102

这些发现表明,深度学习辅助的决策支持工具可以通过在偏远和资源匮乏地区实现任务转移,使超声心动图的实践和可及性得到普及,降低成本,提高服务可及性,并最终加强全民医保覆盖。

然而,由于人工智能实施所需的初始成本和技术基础设施,大多数医疗保健领域的人工智能研究是在高收入国家进行的。因此,未来的研究应评估在低收入和中等收入地区实施人工智能对质量和卫生经济学的影响。


6-2:疾病进展和治疗反应的监测

人工智能增强的超声心动图在改善进展缓慢的心脏病监测和管理方面具有巨大潜力,包括检测肿瘤治疗引起的心脏毒性。

靶向癌症治疗可诱发心脏毒性作用,通常在出现症状性心力衰竭之前很久就表现为轻微的心脏功能障碍。指南提倡将超声心动图用于基线风险评估和持续监测,将超声心动图定位为识别化疗相关心脏毒性的主要工具 103{}^{103}103

通过提高测量的精度并减少与操作者相关的变异性,人工智能方法可使临床医生检测到那些可能被忽视的细微异常。这种能力有助于更细致、及时地调整治疗计划。

人工智能辅助的整体纵向应变测量对于监测接受曲妥珠单抗或帕妥珠单抗辅助或转移性疾病治疗的乳腺癌患者的心脏功能是准确的 11{}^{11}11


一项针对接受化疗的癌症患者的可行性研究表明,肿瘤学家和护士使用手持式人工智能辅助超声设备能够准确检测出左心室射血分数低于50%的情况,这表明该设备有潜力加快癌症患者的临床工作流程并简化患者护理 104{}^{104}104

同样,人工智能超声心动图有潜力通过优化纵向监测来改变肥厚型心肌病等病症的管理。这项技术提高了超声心动图评估的可及性和可重复性,有可能为心肌肌球蛋白抑制剂的治疗剂量设定以及监测治疗反应和毒性提供成像终点。

此外,人工智能在超声心动图中的新兴应用可能在瓣膜病患者的精准医疗中发挥关键作用,例如对主动脉瓣狭窄的监测,不仅涉及早期检测,还包括监测、风险预测和定制干预 105{}^{105}105


6-3:临床研究

超声心动图用于评估临床试验的入选标准和结果指标。鉴于需要高度的准确性和可重复性,这种情况受到严格控制。

即使在这些严格条件下,人工智能增强的超声心动图已证明具有可靠性和效率,这主要归功于其高度的标准化和低变异性 18{}^{18}18

因此,人工智能支持的超声心动图已成功整合到超声心动图核心实验室工作流程中。


临床试验中的另一个潜在应用是基于人工智能的存储超声心动图图像和报告的分析与解读,这可以加速入选评估和筛查程序。

例如,在一项基于人群的队列研究中,对病历进行关键词搜索并结合人工智能自动读取存储的医学数字成像和通信(DICOM)超声心动图图像,成功识别出射血分数保留的心力衰竭(HFpEF)和射血分数降低的心力衰竭(HFrEF)患者以及无心力衰竭的对照者,得出了患有共同疾病、血浆利钠肽水平升高且预后不良的患者群体 106{}^{106}106

在另一个仅基于超声心动图报告的例子中,一个整合多维超声心动图数据的人工智能模型比当前超声心动图指南更准确地识别出HFpEF患者的特定亚组,用于预测左心室充盈压(曲线下面积为0.88对0.67) 107{}^{107}107


结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关科研服务,欢迎扫码前往我们团队的主页!

NatureRobotics是一份关于机器人领域的重要学术期。作为《Nature》出版社旗下的,它定期发表有关机器人技术、人工智能和自动化领域的最新研究成果和学术论文。 该期的论文涵盖了各种类型的机器人,包括工业机器人、服务机器人、疗机器人、探险机器人等等。这些论文描述了机器人的设计原理、控制方法、感知技术以及与人类进行交互的能力。这些研究为改进机器人技术,推动其应用于各个领域提供了重要的理论基础和实践指导。 《NatureRobotics还提供了关于人工智能与机器人领域的综述文章和专题报道。这些文章回顾当前研究的进展,探讨前沿技术的发展趋势,并对未来的发展方向进行展望。这些综述文章为科研人员提供了一个全面了解机器人领域最新进展的平台,促进了学术界的交流和合作。 此外,《NatureRobotics还定期举办学术会议和研讨会,为科研人员提供了一个交流和分享最新成果的机会。这些活动为该领域的专家学者提供了一个相互学习和互相启发的平台,促进了机器人技术的创新发展。 总之,作为一份重要的学术期,《NatureRobotics为机器人领域的研究者和从业人员提供了一个宝贵的资源。它通过发表论文、综述文章以及举办学术会议的方式,推动机器人技术的发展,并促进了学术界的合作和交流,为实现人工智能和自动化技术的进步做出了重要贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值