YOLOv5车牌+关键点检测

本文介绍了如何在YOLOv5中添加关键点检测分支,以实现车牌检测、校正和识别的任务。通过修改YOLOv5配置,训练数据处理,以及损失函数,成功训练出能检测车牌4个角点的模型。训练过程和验证结果显示关键点检测功能有效,可用于实际业务流程中对车牌的矫正和识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0. 项目简介

1. 数据处理

2. yolov5配置部分

3. 训练

4. 验证

5. 导出onnx

6. 业务流测试(检测+矫正+识别)

7. 车牌关键点说明

7.1 关键点检测分支

7.2 损失函数

8. yolov5源码修改详情

8.1 数据加载 + 增广

8.2 检测头修改

8.3 Loss

8.4 验证、日志

9. 总结


0. 项目简介

在车牌检测任务中,最简单的流程就是车牌检测+车牌识别两个步骤,但当镜头没有正对车牌的时候,图片中的车牌会有透视变形,增加识别任务的难度。

针对拍摄角度引起的透视变形,可再增加一步车牌校正的流程,整个任务流为:车牌检测、车牌校正、车牌识别

对于车牌检测部分,使用常用的检测算法yolo,可以输出目标的检测框和分类概率,但检测框还不能简化校正工作,若能识别出车牌的4个角点就能直接进行矫正了。

与yoloface一样,可在yolo框架中添加关键点回归分支,从而实现对车牌4个角点的检测

本文1-6节为训练实践部分,7-8节为原理说明+代码解释。

1. 数据处理

数据集使用CCPD数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值