引言
长短期记忆网络(LSTM)是循环神经网络(RNN)的一个变种,专门设计用于捕捉时间序列数据中的长期依赖性。LSTM在自然语言处理、金融预测、天气预报等许多领域展现了卓越的性能。本篇博客将详细讲解如何使用PyTorch从零开始构建一个LSTM模型,以进行时间序列预测。我们将通过数据准备、模型构建、训练和评估等步骤,深入理解LSTM的工作原理和应用。
目录
1. LSTM简介
1.1 LSTM的基本原理
LSTM的核心是其独特的单元结构,通过三个门控机制(输入门、遗忘门和输出门)来控制信息的流动。这使得LSTM能够在长时间跨度上保持信息,解决了传统RNN在处理长序列时出现的梯度消失和梯度爆炸问题。
- 输入门:决定哪些信息被写入单元状态。
- 遗忘门:决定哪些信息将被丢弃。
- 输出门:决定当前单元的输出。
1.2 LSTM的结构
LSTM单元的结构如图所示: