> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。> 目标:了解什么是记忆化搜索,并且掌握记忆化搜索算法。
> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!
> 专栏选自:动态规划算法_დ旧言~的博客-CSDN博客
> 望小伙伴们点赞👍收藏✨加关注哟💕💕
一、算法讲解
背包问题 (Knapsack problem) 是⼀种组合优化的 NP完全问题。
问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如选
择,才能使得物品的总价格最⾼。
根据物品的个数,分为如下⼏类:
- 01 背包问题:每个物品只有⼀个
- 完全背包问题:每个物品有⽆限多个
- 多重背包问题:每件物品最多有 si 个
- 混合背包问题:每个物品会有上⾯三种情况......
- 分组背包问题:物品有 n 组,每组物品⾥有若⼲个,每组⾥最多选⼀个物品
其中上述分类⾥⾯,根据背包是否装满,⼜分为两类:
- 不⼀定装满背包
- 背包⼀定装满
优化⽅案:
- 空间优化 - 滚动数组
- 单调队列优化
- 贪⼼优化
根据限定条件的个数,⼜分为两类:
- 限定条件只有⼀个:⽐如体积 -> 普通的背包问题
- 限定条件有两个:⽐如体积 + 重量 -> ⼆维费⽤背包问题
根据不同的问法,⼜分为很多类:
- 输出⽅案
- 求⽅案总数
- 最优⽅案
- ⽅案可⾏性
二、算法习题
2.1 第一题
题目链接:【模板】01背包_牛客题霸_牛客网
题目描述:
算法思路:
我们先解决第⼀问:
1. 状态表⽰:
dp[i][j] 表⽰:从前 i 个物品中挑选,总体积「不超过」 j ,所有的选法中,能挑选出来的最⼤价值。
2. 状态转移⽅程:
线性 dp 状态转移⽅程分析⽅式,⼀般都是根据「最后⼀步」的状况,来分情况讨论:
- 不选第 i 个物品:相当于就是去前 i - 1 个物品中挑选,并且总体积不超过 j 。此时 dp[i][j] = dp[i - 1][j] ;
- 选择第 i 个物品:那么我就只能去前 i - 1 个物品中,挑选总体积不超过 j - v[i]的物品。此时 dp[i][j] = dp[i - 1][j - v[i]] + w[i] 。但是这种状态不⼀定存在,因此需要特判⼀下。
- 综上,状态转移⽅程为: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] +w[i]) 。
3. 初始化:
我们多加⼀⾏,⽅便我们的初始化,此时仅需将第⼀⾏初始化为 0 即可。因为什么也不选,也能满⾜体积不⼩于 j 的情况,此时的价值为 0 。
4. 填表顺序:
根据「状态转移⽅程」,我