基于大数据爬虫+hadoop+Echarts的茶叶电商销售数据分析平台设计和实现(精品源码+精品论文+数据集+答辩PPT)

博主介绍CSDN毕设辅导第一人、靠谱第一人、全网粉丝50W+,csdn特邀作者、博客专家、腾讯云社区合作讲师、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流

技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。

主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路

🍅文末获取源码联系🍅

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅

Java项目精品实战案例《100套》

大数据项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

系统介绍:

 系统介绍:

茶叶作为传统多样化饮品的重要原料,消费市场持续增长,然而由于品类繁多和用户口味各异,传统推荐方式难以满足个性化需求。为此,本文构建了一个基于大数据和推荐算法的茶叶电商销售数据分析平台。平台融合用户行为、茶叶特性和评价数据,采用协同过滤算法实现个性化推荐。系统设计包括用户模块、推荐模块、数据处理模块和前端展示模块,采用Hadoop、Spark处理大数据,结合MySQL、Vue.js、Echarts和Spring Boot提升交互体验与业务能力。基础数据由爬虫采集,并经数据清洗、去重、归一化处理,确保推荐结果的准确性与一致性。研究表明该系统具备较高的推荐效率和用户满意度,能够实现动态推荐,提升用户选择效率,同时为商家提供精准的市场反馈,有助于优化产品和营销策略,验证了大数据在推荐系统中的应用价值,并为其他推荐平台建设提供参考。

关键词:Echarts;MySQL数据库;Hadoop;Spring Boot框架

功能截图参考:

系统架构参考:

本系统采用典型的分层架构设计,主要分为表示层、业务逻辑层和数据访问层,以Spring Boot为核心框架构建Web服务,并使用MySQL作为后端数据库,支持个性化推荐系统的功能实现。在最上层,用户通过Web浏览器访问系统页面,前端使用HTML和JavaScript技术构建表示层,负责与用户交互和展示推荐结果。前端通过HTTP协议与后端进行通信,发送请求并接收推荐数据,交互接口主要以RESTful风格的list接口实现。业务逻辑层是系统的核心,基于Spring Boot框架组织开发。该层包含多个模块:controller负责接收并响应前端请求;service处理具体的业务逻辑,如调用推荐算法、计算相似度等;entity用于映射数据库中的数据结构;dao(数据访问对象)模块用于定义数据库操作方法。通过这些模块协同工作,实现用户行为数据的处理和推荐结果的生成。数据访问层通过ORM(对象关系映射)技术将Java对象与数据库表进行映射,提高开发效率和数据操作的安全性。系统通过PDO(Java Data Object)技术与MySQL数据库通信,完成用户行为数据的存储与读取,如用户收藏记录、书籍信息及推荐结果等。

整个系统架构清晰,各模块职责分明,前后端分离,便于维护与扩展。在保证系统稳定性的同时,还能灵活支持协同过滤推荐算法的接入,适用于个性化阅读推荐系统的需求。

视频演示

请文末卡片dd我获取更详细的演示视频

论文部分参考:

3.1数据采集

数据获取是基于大数据的茶叶电商销售数据分析平台的核心环节之一,系统的推荐效果高度依赖于数据的全面性和准确性[15]。数据主要来源于电商平台和茶叶供应商的公开信息。通过多维度的数据描述,系统能够更加全面地分析茶叶的特性,将其与用户的偏好数据进行匹配。此外用户评价数据包括用户对茶叶产品的打分、评论内容、点赞数等。数据采集时会从用户的评价中提取关键词,以便更精准地描绘产品的优劣。数据采集完成后,需经过预处理,包括数据清洗、去重、缺失值处理等操作,确保数据的高质量和一致性,以提高推荐系统的准确性,流程如图3-1所示。

图3-1 数据采集流程图

定义一个Scrapy爬虫类`ShangpinxinxiSpider`,用于爬取指定网站的茶叶商品信息。`name`定义了爬虫的名称,`spiderUrl`指定了目标网站的URL,`start_urls`将目标网站的URL按分号拆分成一个列表,作为爬取的起始URL。`protocol`和`hostname`用于定义协议和主机名,暂时为空。`realtime`用于指定是否实时获取数据,初始化为False。爬虫代码如下所示。

class ShangpinxinxiSpider(scrapy.Spider):
    name = 'ShangpinxinxiSpider'
    spiderUrl = 'https://api.m.jd.com/?appid=search-pc-Java&functionId=pc_search_s_new&client=pc&clientVersion=1.0.0&t=1702559089960&body=%7B%22keyword%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8+%E6%95%B0%E7%A0%81+%E5%AE%B6%E5%B1%85+%E7%BE%8E%E5%A6%86+%E9%A3%9F%E5%93%81%22%2C%22wq%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8+%E6%95%B0%E7%A0%81+%E5%AE%B6%E5%B1%85+%E7%BE%8E%E5%A6%86+%E9%A3%9F%E5%93%81%22%2C%22pvid%22%3A%22a2a996791aab42e9ad8b68f16f94197b%22%2C%22isList%22%3A0%2C%22page%22%3A%22{}%22%2C%22s%22%3A%221%22%2C%22click%22%3A%220%22%2C%22log_id%22%3A%221702559064094.4675%22%2C%22show_items%22%3A%22%22%7D&loginType=3&uuid=181111935.1408214845.1694007854.1702556902.1702556938.5&area=19_1634_1638_8462&h5st=20231214210449990%3Bggg5i3tnzm9i55t3%3Bf06cc%3Btk03wae611c3618ntD4QCKUwmhd42MmFrZbMyJ8DqRdjV-CAYtwx6cmZkPSVutZrYiT2i77H8IJxDEr2WLUlNOB0pycR%3B447aca034adb11942964605690cef959%3B4.1%3B1702559089990%3Bee3cf7f6b94dc20e9265d83066bb9ceece4bb89e2b7e8bf5afb1bfd928788174bfa06c210ddd4437d8a2e234330c3a3980b96c3953b1ab788029ae792b39e11334a726f4ed230d5e3515dc0a763f838d8f3e2e7f830157d7b3ae2499dfeb9e1e0f639edcd875cf0339fadc1d87dc8a62dff67fb6b49df25a74edd50d35ab35cc9f444bb51188b37a73c72ff793e42d6b044acf689a5c7d6de10afcee1b44ae11035934b4b22a015b3b89a2059f21c425a0cd861ba7d69e00ddac2efad39fa5c480179543ac1f3552043b49ba98930e389c84017c8ae3476437e7376b6b6779dd205749224f57c308dbf76e9f37f3d34353a7246efc08da19cf7803020fe4fe843c70098ba0b74e908e48bb85427ca382a6f0c5add62f5ca7c49083240028bb81&x-api-eid-token=jdd03TLYH3MYYJCLOXSDCOBJTFTYB37CLOWCYVGHFXVWEWNPVYOCSHPZ5CNNUVSMXVX4ZT6FGINGLA3UNYNQ4APJTAA6TXEAAAAMMNBUFKVYAAAAACDHPSJV7ZRGQ4AX'

start_urls = spiderUrl.split(";")'
    start_urls = spiderUrl.split(";")
    protocol = ''
    hostname = ''
    realtime = False

使用parse方法进行一些初始化操作和判断条件。通过urlparse函数解析self.spiderUrl得到URL的协议和主机名,并将其分别赋值给self.protocol和self.hostname。再通过platform.system().lower()获取当前操作系统的名称,并将其转换为小写字母,保存在plat变量中。接着建立数据库连接,并将连接对象赋值给connect变量。获取数据库的游标对象,并将其赋值给cursor变量,调用table_exists函数检查数据库中是否存在名为'5nw5u40i_Shangpinxinxi'的表,如果存在就执行关闭游标和连接,调用temp_data函数,最后返回。数据存储代码如下所示。

def parse(self, response):
    _url = urlparse(self.spiderUrl)
    self.protocol = _url.scheme
    self.hostname = _url.netloc
    plat = platform.system().lower()
    if not self.realtime and (plat == 'linux' or plat == 'windows'):
        connect = self.db_connect()
        cursor = connect.cursor()
        if self.table_exists(cursor, '5nw5u40i_Shangpinxinxi') == 1:
            cursor.close()
            connect.close()
            self.temp_data()
            return

使用Scrapy爬虫的回调函数,进行解析详情页面,从response的meta中获取字段对象fileds,最后对其进行赋值和处理。代码如下所示。

def detail_parse(self, response):
    fields = response.meta['fields']
    try:
        fields["detail"] = str( emoji.demojize(response.css('''div.detail-des_lists''').extract_first()))
    except:
        pass
    return fields

3.2数据库设计

E-R图是一种强大的工具,它通过图形化的方式将数据库的复杂结构变得直观易懂。E-R图能够清晰描绘出管理员、用户等核心实体以及它们之间复杂关联的模式。这个图形化的表现不但给数据库设计者带来了很大的方便,使他们能够快速把握数据结构的全貌,而且也为非技术人员或测试人员提供了理解数据库设计的直观途径。通过E-R图,团队成员可以更加轻松地交流数据库的设计思路,从而有效促进团队间的沟通与协作,确保项目的顺利进行。本文采用E-R图设计,分析不同实体之间的关系。系统总体E-R图如图3-2所示。

图3-2总体E-R图

3.3数据预处理

3.3.1处理流程

在基于大数据的商品推荐系统开发中,数据集处理是至关重要的环节。数据集处理流程如下:首先,通过各种渠道搜集茶叶商品信息数据集,涉及抓取在线茶叶商品信息平台的数据,以及整合茶叶商品公告等。涵盖茶叶商品的核心详情等。数据处理流程图如下图3-1所示。

图3-1数据处理流程图

3.3.2数据存储

获取到数据集后,重要的一环是执行数据清洗和预处理步骤。数据清洗的目的是保证数据质量和完整性,涉及消除重复记录、处理未填充的值、修正不准确的信息等。预处理阶段则涵盖数据的格式统一、标准化和转化操作,以适应后续的分析需求。这一过程利用pandas库来进行数据洞察,并结合Scrapy架构进行高效的数据采集和清洗,从而保证数据的精确度和实用性。为了数据的可靠存储和扩展能力,数据库选用MySQL数据库系统。

为了建立与MySQL数据库的连接,使用root用户,其密码设定为123456,目标数据库名为spider5nw5u40i。采用pandas的read_sql方法,可以从数据库中提取所需的数据。具体代码实现如下。

def pandas_filter(self):
    engine = create_engine('MySQL+pyMySQL://root:123456@localhost/spider5nw5u40i?charset=UTF8MB4')
    df = pd.read_sql('select * from Shangpinxinxi limit 50', con = engine)

3.3.3数据预处理

数据预处理首先检查DataFrame对象df是否存在重复的行,使用'df.drop_duplicates()'函数删除对象中重复行。调用'df.isnull()'函数检测对象df'中的缺失值。随后调用'df.dropna()'函数删除具有缺失值的行。'df.fillna(value='暂无')'函数将对象df中的缺失值替换为指定的值'暂无'。代码如下所示。

df.duplicated()
df.drop_duplicates()
df.isnull()
df.dropna()
df.fillna(value = '暂无')

生成一个包含80个介于0到1000之间的随机整数的数组a,然后定义了一个布尔条件cond,用于筛选满足a在100到800之间的元素。生成一个包含10万个符合标准正态分布的随机数的数组b,定义一个布尔条件cond,用于筛选满足b的绝对值大于3的元素。

创建一个形状为10000行3列的DataFrame df2,其中的数据是符合标准正态分布的随机数。定义一个布尔条件cond,用于筛选在df2中任意一列的值大于三倍标准差的行。该行代码使用索引操作df2[cond].index,获取满足条件cond的行的索引。删除具有指定索引的行,并返回更新后的对象df2。代码如下所示。

a = np.random.randint(0, 1000, size = 80)
cond = (a<=800) & (a>=100)
a[cond]
b = np.random.randn(100000)
cond = np.abs(b) > 3 * 1
b[cond]
df2 = pd.DataFrame(data = np.random.randn(10000,3))
cond = (df2 > 3*df2.std()).any(axis = 1)
index = df2[cond].index
df2.drop(labels=index,axis = 0)

移除HTML标签,首先,检查html参数是否为None,如果是则返回空字符串。然后使用正则表达式模式匹配HTML标签的正则表达式(<[^>]+>),并通过re.sub函数将匹配到的HTML标签替换为空字符串。最后使用strip函数去除字符串两端的空白字符,并返回处理后的结果。代码如下所示。

def remove_html(self, html):
    if html == None:
        return ''
    pattern = re.compile(r'<[^>]+>', re.S)
    return pattern.sub('', html).strip()

在初始化数据库链接流程时,首要任务是从配置文件中提取必要的连接参数,这些参数涵盖了数据库的种类标识、服务器地址、端口、登录凭证,如用户名和密码。如果数据库名称未明确指定,系统会尝试从self.databaseName属性中寻找。接下来,根据所识别的数据库类型动态选择适配的连接技术。例如,如果确认是MySQL,会选择pyMySQL库进行无缝对接;反之,如果不是MySQL,程序将同样采用pyMySQL库来建立连接。最终,这段代码将执行并返回一个有效的连接对象,记作connect,整个过程逻辑严谨且高效。以下是具体实现的代码段:

def db_connect(self):
    type = self.settings.get('TYPE', 'MySQL')
    host = self.settings.get('HOST', 'localhost')
    port = int(self.settings.get('PORT', 3306))
    user = self.settings.get('USER', 'root')
    password = self.settings.get('PASSWORD', '123456')

    try:
        database = self.databaseName
    except:
        database = self.settings.get('DATABASE', '')

    if type == 'MySQL':
        connect = pyMySQL.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')
    else:
        connect = pymssql.connect(host=host, user=user, password=password, database=database)
    return connect

将处理好的数据进行数据存储,定义一个包含插入语句的sql字符串,目标数据库表是Shangpinxinxi,列名包括id、jobname、salary等,从表5nw5u40i_Shangpinxinxi中选择符合条件的数据,将这些数据插入到目标表中。

def temp_data(self):
    connect = self.db_connect()
    cursor = connect.cursor()
    sql = '''
        insert into `Shangpinxinxi`(……)
        select …… from `5nw5u40i_Shangpinxinxi`
        where(not exists (select …… from `Shangpinxinxi` where
              `Shangpinxinxi`.id=`5nw5u40i_Shangpinxinxi`.id))
         '''
    cursor.execute(sql)
    connect.commit()
    connect.close()

3.4数据存储分析

推荐项目:

基于大数据爬虫+数据可视化的农村产权交易与数据可视化平台

基于SpringBoot+数据可视化+大数据二手电子产品需求分析系统

基于SpringBoot+数据可视化+协同过滤算法的个性化视频推荐系统

基于SpringBoot+大数据+爬虫+数据可视化的的媒体社交与可视化平台

基于大数据+爬虫+数据可视化+SpringBoot+Vue的智能孕婴护理管理与可视化平台系统

基于大数据爬虫+Hadoop+数据可视化+SpringBoo的电影数据分析与可视化平台

基于python+大数据爬虫技术+数据可视化+Spark的电力能耗数据分析与可视化平台

基于Python+大数据城市景观画像可视化系统设计和实现

2022-2024年最全的计算机软件毕业设计选题大全

基于Java+SpringBoot+Vue前后端分离手机销售商城系统设计和实现

基于Java+SpringBoot+Vue前后端分离仓库管理系统设计实现

基于SpringBoot+uniapp微信小程序校园点餐平台详细设计和实现

基于Java+SpringBoot+Vue前后端分离摄影分享网站平台系统 

基于Python热门旅游景点数据分析系统设计与实现

项目案例参考: 

为什么选择我

 博主是CSDN毕设辅导博客第一人兼开派祖师爷、博主本身从事开发软件开发、有丰富的编程能力和水平、累积给上千名同学进行辅导、全网累积粉丝超过50W。是CSDN特邀作者、博客专家、新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流和合作。 

源码获取:

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

 精彩专栏推荐订阅下方专栏👇🏻

2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅

Java项目精品实战案例《100套》

Java微信小程序项目实战《100套》

Python项目实战《100套》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java李杨勇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值