LeetCode215之数组中的第K个最大元素(相关话题:堆排序,快速排序,减治法)

该博客详细介绍了如何解决LeetCode中的第215题,即在未排序数组中找到第K个最大的元素。文中提供了两种解法:堆排序和快速排序(减治法)。对于堆排序,解释了堆排序的基本过程和代码实现,并指出Java的PriorityQueue可以简化实现。对于快速排序,通过循环和递归两种方式展示了如何找到第K个最大元素,讨论了partition过程与二分查找的关系,以及在循环结束后i与j的关系。文章最后强调了在面试中理解和掌握快速排序的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

题目描述

解法1:堆排序

解题思路

代码实现

解法2:快速排序,减治法

循环写法

递归写法

知识拓展


题目描述

在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:

输入: [3,2,1,5,6,4] 和 k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4

说明:

你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。

解法1:堆排序

解题思路

堆排序比较基本过程:把非叶子节点A下的子节点(A1,A2)的最大值(设为A1)和A比较。A1大于A的话,A1和A互换,否则不互换。在执行的过程中较小的值被逐层下移,下面对对堆排序过程的描述。

代码实现

用数组来记录堆,设非叶子节点数组下标为i,那么它的左右子节点的下标分别为 2*i+1 和 2*i+2,

倒数第一个非叶子节点下标为 heapSize/2-1

public class LeetCode215数组中的第K个最大元素 {

	public static void main(String[] args) {

		int nums[] = { 3, 2, 3, 1, 2, 4, 5, 5, 6 };

		LeetCode215数组中的第K个最大元素 a = new LeetCode215数组中的第K个最大元素();
		System.out.println(a.findKthLargest(nums, 4));

	}

	public int findKthLargest(int[] nums, int k) {

		int heapSize = nums.length;
		// heapSize个元素原地建堆
		buildMaxHeap(nums, heapSize);
		// 遍历最后k个元素,把堆顶和堆最后一个交换,交换后重新堆化
		// 此时nums[0]已经是数组中最大的数了,还需要交换k-1次,才能得到topk
        //所以循环的次数为k-1
		for (int i = nums.length - 1; i >= nums.length - k + 1; --i) {
			swap(nums, 0, i);
			--heapSize;
			maxHeapify(nums, 0, heapSize);
		}
		return nums[0];

	}

	// 建堆,从倒数第一个非叶子节点开始堆化,倒数第一个非叶子节点下标为 heapSize/2-1
	public void buildMaxHeap(int[] a, int heapSize) {
		for (int i = heapSize / 2 - 1; i >= 0; --i) {
			maxHeapify(a, i, heapSize);
		}
	}

	// 堆化递归写法
	// 父节点下标i,左右子节点的下标分别为 2*i+1 和 2*i+2
	public void maxHeapify(int[] a, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据与算法架构提升之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值