【思维导图】【脑机接口社区】利用LSTM(长短期记忆网络)来处理脑电数据【提供代码及数据集】

【电脑用户可直接拉至本文末尾,浏览脑图完整版】

【本文代码及数据集】
https://github.com/maosenGao/LSTM_EEG_Maosen

在这里插入图片描述整体框架,这篇文章还是以介绍LSTM为主的
在这里插入图片描述

本文胜在对LSTM公式的理解上,但关于为什么要用LSTM上没有做非常详尽的说明,这里做一点补充:

在这里插入图片描述

关于理解部分摘录自这篇题为《多图|入门必看:万字长文带你轻松了解LSTM全貌》的文章,很详细,推荐配合本文阅读。

在这里插入图片描述

LSTM是RNN网络的变形,自然得首先充分理解RNN

在这里插入图片描述留意这里的各个符号的含义,这里四个激活函数,三个sigmoid,两个tanh 的选取是有其背后的原因的,不能混用。
三个sigmoid :各自对应这一个门
tanh 则体现了LSTM 保留着RNN 的痕迹。

在这里插入图片描述
LSTM 的核心思想包含 细胞状态和门 这两个概念
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
本文最有价值的内容来了!

后面就是代码部分了,数据集下载不复杂,很值得拿来练练手
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
若想查阅本文文字部分,可【脑机接口社区】公众号搜索“利用LSTM(长短期记忆网络)来处理脑电数据”获得,通过学习平台上的文章,本人不断增进对脑机接口的认识,在此一并表示感谢~

【本文代码及数据集】
https://github.com/maosenGao/LSTM_EEG_Maosen

最后附上完整文件的图片格式
在这里插入图片描述

LSTM在脑电数据处理中的应用

生动版标题:LSTM如何成为脑电数据处理的新宠?

学术版标题:LSTM网络在脑电信号处理中的应用与性能分析

【表格】LSTM在脑电数据处理中的应用

序号主题内容详细描述关键参数/方法公式/算法备注
1LSTM基础LSTM是RNN的一种变体,擅长处理序列数据中的长期依赖问题LSTM单元-核心在于遗忘门、输入门、输出门的设计
2RNN与LSTM对比LSTM通过引入门控机制解决了RNN在长序列训练中的梯度消失/爆炸问题RNN vs LSTM-LSTM更适合处理具有长期依赖关系的EEG数据
3LSTM结构包括遗忘门、输入门、输出门,以及细胞状态遗忘门(f), 输入门(i), 输出门(o), 细胞状态© f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)各门和细胞状态的计算公式复杂但高效
4激活函数选择LSTM中激活函数的选择对性能有重要影响Sigmoid, Tanh σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1, T a n h ( x ) = e x − e − x e x + e − x Tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} Tanh(x)=ex+exexexSigmoid用于门控,Tanh用于细胞状态更新
5LSTM在EEG中的应用用于特征提取、分类、预测等任务,提升模型性能特征提取, 分类, 预测-LSTM能有效捕捉EEG信号中的时序特征
6实验设计包括数据集选择、预处理、模型构建、训练与评估数据集(如EEGMMIDB), 预处理(滤波、分段), 模型参数(如层数、神经元数)-详细步骤确保实验可重复性和结果可靠性
7实验结果通过对比实验展示LSTM相比传统方法的优势准确率, 召回率, F1分数-LSTM在多个性能指标上通常优于传统方法
8挑战与未来方向数据不平衡、计算资源需求大等问题,以及与其他技术的融合趋势数据不平衡处理, 模型优化, 多模态融合-未来的研究方向包括算法优化和多模态数据处理

核心结论:LSTM网络通过其独特的门控机制,在处理具有时序特性的脑电信号(EEG)时展现出显著优势,能够有效提取信号中的关键特征,提高分类和预测的准确性。然而,实际应用中仍需注意数据不平衡、计算资源等问题,并探索与其他技术的融合应用。

几个公式

  • 遗忘门公式: f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)
  • 输入门和候选细胞状态公式(部分): i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi[ht1,xt]+bi) C ~ t = T a n h ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = Tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=Tanh(WC[ht1,xt]+bC)

关键点关系描述

  1. LSTM结构中的遗忘门、输入门和输出门共同控制着信息的流动,确保网络能够学习到长期依赖关系。
  2. 激活函数选择对于LSTM的性能至关重要,Sigmoid函数用于门控,确保门的输出在0和1之间,而Tanh函数则用于细胞状态的更新。
  3. LSTM在EEG中的应用通过捕捉时序特征,显著提高了EEG信号处理的准确性,特别是在分类和预测任务中表现优异。

关键词:LSTM, EEG信号处理, 时序数据, 深度学习, 特征提取。
Keywords: LSTM, EEG signal processing, time-series data, deep learning, feature extraction.

关键词
#LSTM
#EEG信号处理
#时序数据
#深度学习
#特征提取

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

认知计算 茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值