注:由于博主的是水平有限,对RVMD在流体力学相关的应用可以浏览:发掘数据中的瞬态/非平稳动力学 | 降阶变分模态分解(RVMD) https://zhuanlan.zhihu.com/p/632908727
引言
受Hilbert-Huang变换和变分模态分解(VMD)的启发,提出了一种新的数据驱动模态分析方法——降阶变分模态分解(RVMD),以解决瞬态或统计非平稳流动动力学问题。首先,结合低阶表示和内禀模态函数的思想,构建了RVMD模态的形式(称为“初等低阶动态过程”,ELD),使计算得到的模态能够表征时空流体流动的非平稳特性。然后,基于VMD设计了RVMD算法,实现了流量数据中eld的低冗余自适应提取,并通过求解精细优化问题计算出模式。此外,RVMD和希尔伯特谱分析的结合导致了希尔伯特观点中基于模态的时频分析框架,为发现、量化和分析复杂流动问题中的瞬态和非稳态动力学提供了潜在的强大工具。为了提供一个全面的评价,讨论了RVMD的计算代价和参数依赖性,以及RVMD与一些经典模态分解方法之间的关系。最后,通过瞬态圆柱尾迹和平面超声速尖叫射流两个典型问题,很好地证明了RVMD和基于模态的时频分析框架的优点和实用性。