2025年优化算法:真菌生长优化算法(Fungal Growth Optimizer,FGO)

真菌生长优化算法(Fungal Growth Optimizer,FGO) 是发表在中科院一区期刊“ARTIFICIAL INTELLIGENCE REVIEW”(IF:6.7)的2025年3月智能优化算法

01.引言

Fungal Growth Optimizer (FGO) 是一种基于真菌生长行为的元启发式优化算法,灵感来源于真菌的菌丝尖端生长、分支和孢子萌发三个关键生物学过程。该算法通过模拟真菌在复杂环境中寻找营养的机制,平衡探索与开发能力,有效解决高维、多模态优化问题。代码实现了FGO的核心数学模型,结合文献描述,以下从原理、流程和实现细节进行全面解析。

02.算法原理

在真菌包括一个真核生物王国,在环境中营养物质的循环中起着重要作用;它们是异养生物,即它们不能自己生产食物,必须从有机材料中获取营养。真菌包括大约 144,000 种已知物种,例如酵母菌、霉菌、霉菌和蘑菇。真菌与细菌和植物表现出共生关系,可以有性繁殖和无性繁殖。然而,它们也会引起动植物的各种疾病。真菌非常适合在复杂环境中生长,因为它们能够产生菌丝,从而形成复杂的菌丝网络。菌丝是真菌细胞的独特生长形式,具有丝状结构。形成菌丝体的主要菌丝生长行为是菌丝尖端生长、分枝和孢子萌发 。以下将简单介绍真菌生长优化算法原理。

1. 菌丝尖端生长 (Hyphal Tip Growth)

(1)探索阶段:通过指数生长模型模拟菌丝随机探索,公式:

其中r1为随机数,t为当前迭代次数。方向由随机个体差异驱动:S_new = S + E*(Sa - Sb)

(2)开发阶段:基于化学趋向性,分为两种策略:

  • 趋向最优解:方向向量包含当前最优解信息:

  • 避让有害区域:引入反向扰动项Ec,公式:

2. 菌丝分支 (Branching)

  • 侧向分支:结合随机个体差异和最优解方向:

其中E^L为分支生长速率,受适应度影响。

3. 孢子萌发 (Spore Germination)

  • ​位置更新:在最优解与随机个体间插值,并加入随机扰动

其中S_g为随机符号(±1),E为指数生长因子

03.算法算法流程(结合代码)

1.初始化阶段

S = initialization(N, dim, ub, lb);  
Sp = S;  % 个体历史最优  
fit = fobj(S);  
[Score, Position] = min(fit);  

初始化阶段通过均匀分布生成初始菌丝群体,每个菌丝代表解空间中的一个候选解。这里通过initialization函数实现了两种边界处理方式:

  • 单边界模式

    (当ub/lb为标量时):所有维度共享同一边界范围。

  • 多边界模式

    (当ub/lb为向量时):每个维度独立设置边界,更适应高维异构问题。

初始适应度计算后,记录全局最优解(Position)及其适应度(Score)。此步骤为算法后续的“营养分配”和“菌丝行为选择”提供基准。

    2.  主循环结构

    while t < Tmax
        if rand < rand  % 随机选择生长或分支
            %% 菌丝尖端生长
            for i=1:N
                % 计算探索概率Er
                p = (fit(i)-min(fit))/(max(fit)-min(fit)+eps);
                Er = M + (1 - t/Tmax)*(1 - M);
                if p < Er  % 探索
                    F = (fit(i)/sum(fit)) * rand * (1 - t/Tmax)^(1 - t/Tmax);
                    E = exp(F);
                    S(i,:) = S(i,:) + E*(Sa - Sb);  % 随机方向生长
                else       % 开发
                    Ec = (rand-0.5).*rand.*(Sa - Sb);  % 环境扰动
                    if rand < rand  % 避让策略
                        De2 = rand.*(S(i,:) - Position).*(rand>rand);
                        S(i,:) = S(i,:) + De2.*nutrients(i) + Ec*(rand>rand);
                    else            % 趋向策略
                        De = rand*(Sa - S(i,:)) + rand*(beta*Position - S(i,:));
                        S(i,:) = S(i,:) + De.*nutrients(i) + Ec*(rand>Ep);
                    end
                end
            end
        else
            %% 分支与孢子萌发
            if rand < 0.5  % 分支
                EL = 1 + exp(fit(i)/sum(fit))*(rand>rand);
                S(i,:) = S(i,:) + r5*EL*(Sb - Sc) + (1-r5)*EL*(Sa - Position);
            else           % 孢子萌发
                mu = sign(rand-0.5)*rand*exp(F);
                S(i,:) = ((t/Tmax)*Position + (1-t/Tmax)*Sa + Sb)/2 + mu*abs(mean(Sabc)-S(i,:));
            end
        end
        % 边界处理与适应度更新
        S = min(max(S, lb), ub);
        [fit, Position, Score] = updateFitness(S, fit, fobj);
    end  

      主循环通过rand < rand实现随机行为选择:

      • ​菌丝尖端生长​(约50%概率):模拟菌丝在当前位置的延伸,包含探索与开发两种策略。

      • ​分支与孢子萌发​(约50%概率):模拟菌丝侧向分支或孢子扩散,增强全局搜索能力。

      这种随机机制避免了算法陷入固定模式,同时通过后续的适应度评估实现动态行为调节:表现差的个体更倾向于探索,表现优的个体偏向开发。

      3.菌丝尖端生长

      子模块1:探索阶段

      F = (fit(i)/sum(fit)) * rand * (1 - t/Tmax)^(1 - t/Tmax);  
      E = exp(F);  
      S(i,:) = S(i,:) + E*(Sa - Sb);  
      • ​营养驱动:F的计算结合个体适应度占比(fit(i)/sum(fit)),使高适应度个体(营养丰富区域)生长速率更快。

      • ​时间衰减:(1 - t/Tmax)^(...)项在迭代后期抑制探索,逐步转向开发。

      • ​随机扰动:方向向量Sa - Sb通过随机选择个体引入多样性,避免局部最优。

      子模块2:开发阶段

      De = rand*(Sa - S(i,:)) + rand*(beta*Position - S(i,:));  
      S(i,:) = S(i,:) + De.*nutrients(i) + Ec*(rand>Ep); 
      • ​双目标驱动:方向向量包含随机个体差异(Sa - S(i,:))和全局最优吸引(beta*Position - S(i,:)),平衡局部搜索与全局收敛。

      • ​环境扰动:Ec项模拟外界环境变化,当rand > Ep时触发扰动,帮助逃离次优区域。

      ​4. 分支与孢子萌发

      子模块1:侧向分支​​​​​​​

      EL = 1 + exp(fit(i)/sum(fit))*(rand>rand);  
      Dep1 = S(b,:) - S(c,:);  
      Dep2 = S(a,:) - Position;  
      S(i,:) = S(i,:) + r5*EL*Dep1 + (1-r5)*EL*Dep2; 

      自适应分支强度:EL项通过指数函数放大高适应度个体的分支能力,使优质区域被更密集搜索。

      ​混合方向策略:Dep1(随机差异)与Dep2(趋向最优解)通过r5权重混合,兼具探索与开发特性

      子模块2:孢子萌发​​​​​​​

      mu = sign(rand-0.5)*rand*exp(F);  
      S(i,:) = ((t/Tmax)*Position + (1-t/Tmax)*Sa + Sb)/2 + mu*abs(mean(Sabc)-S(i,:));  
      • ​时空插值:(t/Tmax)*Position + ...在迭代初期偏向随机位置(Sa, Sb),后期偏向全局最优,实现从探索到开发的平滑过渡。

      • ​定向扰动:mu项通过sign(rand-0.5)随机化扰动方向(正/负),结合exp(F)控制扰动强度,模拟孢子随风扩散的不确定性。

      5. 边界处理与适应度更新​​​​​​​

      S(i,:) = min(max(S(i,:), lb), ub);  
      if nF < fit(i)  
          Sp(i,:) = S(i,:);  
          fit(i) = nF;  
          if nF < Score  
              Position = S(i,:);  
              Score = nF;  
          end  
      end  
      • 硬边界约束:通过min/max函数将解强制限制在定义域内,简单但可能导致边界聚集。改进方向可引入反射边界或自适应缩放。

      • ​精英保留策略:仅接受更优解更新个体历史最优(Sp)和全局最优(Position),保证算法单调收敛。

      • ​收敛曲线记录:每次评估后更新Convergence_curve,为后续分析提供迭代过程可视化数据。

      算法特性总结

      (1)​多模态处理能力:

      • 孢子萌发机制通过随机插值和扰动,有效跳出局部最优,适合多峰优化问题。

      • 分支行为在优质解周围生成多样性解,避免早熟收敛。

      ​(2)自适应平衡探索与开发:

      • 时间衰减因子(1 - t/Tmax)逐步降低探索强度。

      • 营养分配nutrients动态调整个体搜索倾向。

      ​(3)计算复杂度:

      • 时间复杂度为O(Tmax*N*dim),与主流元启发式算法(如PSO、GA)相当。

      • 空间复杂度为O(N*dim),适合大规模并行计算。

      论文伪代码:

      04.论文中算法对比图

      [1]Abdel-Basset M, Mohamed R, Abouhawwash M. Fungal growth optimizer: A novel nature-inspired metaheuristic algorithm for stochastic optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 437: 117825.

      05.本代码效果图

      ✅作者简介:信号处理方向在校博士研究生,目前专研于MATLAB算法及科学绘图等,熟知各种信号分解算法、神经网络时序、回归和分类预测算法、数据拟合算法以及滤波算法。提供一个可以相互学习相互进步的平台

      🚩技术信仰:知行合一,让每一行代码都成为解决问题的利器

      🔍后台私信备注个人需求(比如TOC-BP)定制以下TOC算法优化模型(看到秒回):

      1.回归/时序/分类预测类:BP、RF、XGBoost、RBF、LSSVM、SVM、ELM、DELM、ESN、RELM等等均可,优化算法优化BP为例,可达到以下效果:

      (1)优化BP神经网络的数据时序预测

      (2)优化BP神经网络的数据回归(多输入多输出)预测

      (3)优化BP神经网络的数据回归预测

      2.分解类:EEMD、VMD、REMD、CEEMDAN、ICEEMDAN、SVMD等分解模型均可,优化算法优化VMD/ICEEMDAN为例,可达到以下效果:

      (1)基于改进天鹰优化算法(IAO)优化的VMD参数

      (2)基于改进天鹰优化算法(IAO)优化ICEEMDAN参数

      3.去噪算法算法类:VMD/CEEMDAN/ICEEMDAN/SVMD+小波阈值/SVD去噪,可在去噪算法前加智能优化算法优化参数以VMD-WT/SVD为例,可达到以下效果:

      (1)基于VMD-SpEn(样本熵)联合小波阈值去噪

      (2)基于SVMD-SVD的信号去噪算法

      (3)基于ZOA优化VMD-IAWT岩石声发射信号降噪算法

      ### 真菌生长优化算法概述 真菌生长优化算法是一种基于自然界中真菌生长模式设计的生物启发式算法。这种算法通过模拟真菌在寻找营养源过程中的扩散行为来解决复杂的优化问题[^1]。其主要特点是利用现有的采样点逐步扩展到新的位置,而非完全随机地生成新样本点。 #### 关键特性 - **渐进式的探索机制**:与传统的全局随机搜索不同,该方法更注重局部区域内的精细搜索。 - **空间分布约束**:为了防止重复访问相同的位置或过于密集的采样,引入了类似于泊松盘分布的距离约束条件。 --- ### IT 实现的核心要素 在计算机科学领域,真菌生长优化算法可以通过编程语言(如 Python 或 MATLAB)实现。以下是其实现过程中涉及的主要技术要点: 1. **初始化参数设置** - 定义初始种群大小以及每个个体对应的坐标范围。 - 设置最小允许间距以满足泊松盘分布的要求。 2. **迭代更新规则** - 借助概率模型决定下一步移动方向及其步长。 - 对于每一个候选解,评估目标函数值并保留最优结果。 3. **终止条件判断** - 当达到预设的最大代数或者连续若干次改进幅度低于阈值时停止运行程序。 --- ### 生物启发式算法的特点 此类算法通常具备以下几个显著特点: - 自适应性强,能够自动调整策略应对未知环境变化; - 并行处理能力强,适合大规模分布式系统架构下的应用需求; - 易受噪声干扰影响收敛性能,因此需谨慎选取控制因子权重配置方案。 --- ### 伪代码示例 下面是关于如何构建一个简单的真菌生长优化框架的一个基本模板描述: ```plaintext Algorithm FungalGrowthOptimization(): Input: SearchSpace, PopulationSize, MinDistanceConstraint Output: BestSolution Initialize population P with random positions within the search space; while not meet stopping criteria do Evaluate fitness values of all individuals in P; Select top-performing members based on their evaluation scores; Generate offspring by applying fungal growth rules considering min distance constraint; For each individual i ∈ selected parents: Determine possible expansion directions according to local gradients or heuristic information; If new position satisfies both boundary and minimum separation requirements then Add it into next generation set Q; Update current population as union(P,Q); Remove redundant elements violating non-overlapping condition imposed by 'MinDistanceConstraint'; end while Return best solution found during execution. ``` 上述流程清晰展现了从起始状态经过多次循环直至最终得出满意解答的整体思路走向。 --- ### 示例代码展示 下面提供了一段简化版Python脚本用于演示这一概念的实际操作方式: ```python import numpy as np def evaluate_fitness(individual): """Define your own objective function here.""" pass class Individual: def __init__(self, pos=None): self.position = pos if pos is not None else generate_random_position() self.fitness_score = float('inf') def generate_random_population(size, bounds): return [Individual(generate_random_position(bounds)) for _ in range(size)] def main_algorithm(search_bounds, pop_size=50, max_iter=100, min_dist=0.1): population = generate_random_population(pop_size, search_bounds) iteration_count = 0 while iteration_count < max_iter: # Fitness Evaluation Step for indv in population: indv.fitness_score = evaluate_fitness(indv.position) # Selection & Expansion Logic Here... ... if __name__ == "__main__": dimensions = [(lower_bound, upper_bound)] * dimensionality_of_problem_space main_algorithm(dimensions) ``` 此版本仅包含了部分功能模块骨架结构供开发者进一步完善补充细节逻辑填充进去即可形成完整的解决方案。 ---
      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包

      打赏作者

      MATLAB科研小白

      你的鼓励将是我创作的最大动力

      ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
      扫码支付:¥1
      获取中
      扫码支付

      您的余额不足,请更换扫码支付或充值

      打赏作者

      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值