✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
分形几何作为一种非欧几里得几何,以其自相似性和复杂性在自然界中广泛存在。随机中点位移(Random Midpoint Displacement, RMD)算法是生成分形地形的一种经典方法。本文将从数据分析的角度,探讨如何利用简单的伪随机数发生器(Pseudo-Random Number Generator, PRNG)实现随机中点位移分形,并分析其在生成逼真地形上的优势和局限性。
一、随机中点位移算法原理及数据分析解释
随机中点位移算法的核心思想在于迭代地将线段或面的中点进行随机位移,从而模拟自然地形的粗糙程度。该算法的基本步骤可以概括如下:
- 初始化:
首先,定义一个初始的线段(二维)或矩形(三维)。在二维情况下,我们需要定义线段的两个端点及其高度值;在三维情况下,则需