✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
空中目标威胁评估是现代空战和空域管理中的关键环节。准确、快速的威胁评估能够辅助决策者制定合理的应对策略,提升防御效率,避免不必要的损失。然而,空中目标环境复杂多变,威胁因素众多,且存在大量的不确定性和模糊性,传统的威胁评估方法难以满足实际需求。近年来,模糊小波神经网络(Fuzzy Wavelet Neural Network, FWNN)以其在处理非线性、不确定性数据方面的优势,在空中目标威胁评估领域展现出巨大的应用潜力。本文将深入探讨基于模糊小波神经网络的空中目标威胁评估方法,分析其优势、构建过程,并展望其未来发展趋势。
一、空中目标威胁评估的挑战与传统方法的局限性
空中目标威胁评估旨在综合考虑目标的各种属性,如类型、速度、航向、高度、距离、威胁等级等,对目标潜在的威胁程度进行量化评估。然而,实现精确的威胁评估面临着诸多挑战: