首先通过分析UAV分配次序对打击任务总收益的影响, 设计了动态战场环境的更新规则. 将航程代价和任务代价作为惩罚项修正目标函数, 建立了考虑分配次序的UAVs协同目标分配优化模型. 然后针对模型的物理意义改进了遗传算法基因编码方式, 设计了MUCTA遗传算法. 该算法利用状态转移思想, 引进SDR算子获得多种分配次序种群, 同时以单行变异算子修正UAV与目标对应关系, 并采用最优个体法和轮盘赌法筛选子代个体.
%本实验目的是验证改进的DE离散目标分配算法的有效性
%实验设置:各种环境,调用目标分配的算法
%目标分配实验的输入:代价矩阵
%利用代价矩阵和映射方法,在离散和连续空间转换
%目标分配实验的输出:有效的基因染色体表示
%比较实验:
%1、可行性分析,三种模型
%2、进化策略对比分析,证明采用双策略的有效性
%3、大数据分析
%4、与其他方法的比较
% 本文只用到了AssignType =2;情形,即UAV数量大于TARGET数量
%使用了改动的遗传算法
%相比较源程序,较大改动部分为:对象执行区(GetFit1和Getfit2两个函数),和差分进化区(全部改动),其他部分有少量改动,我不记得了。很多部分直接删改,可能注释没有对应的上,强烈建议对比源代码学习观看
%本人编程能力较差,编写格式不规范,很多地方注释不足以及随心所欲各种直接删改,不同实验直接改数据,以及出现的重复,各种FOR循环嵌套等等,我自己都觉得乱七八糟。再次强烈建议对比源代码
%建议只使用该代码框架(即阅读源代码即可,本代码可适当看一下就行,估计很费劲),自行删改其中内容,写自己的文章,但注意源代码自行备份,自己的代码尽量多注释以及写实验说明,方便后来的师弟或师妹。
%%%%%%%%%%%%%