1 简介
K近邻(K-NearestNeighbor,KNN)算 法是 一种基于实例的统计学习方法,其基本思想是在多维空间Rn中,对于一个待分类样本x,根据距离找到与未知样本最近邻的k个训练样本点,然后根据这k个近邻样本点的类别决定待分类样本的类别.K近邻算法的具体实现包括两 个 阶 段.
(1)训练阶段:对 训 练 样 本 进 行 离 散 化,读 取 和 存 储;
(2)分类阶段:首先对于待分类的样本,计算它与其他的训练样本的欧式距离.选择其中距离最近的K个样本.并查看这K个近邻的分类标记,根 据多 数 表 决原则确定待测样本的类别.重复以上步骤直至所有待分类的样本分类结束.
2 部分代码
function[A,E,Z] =TimePara(y)
y_length=length(y); %声音信号的长度
Ny=512; %短时帧长
frame_all=floor((y_length-(Ny/2))/(Ny/2));
y2_sound=y(1:(frame_all+1)*(Ny/2));
y3=reshape(y2_sound,(Ny/2),[]);
y4=[y3(:,1:frame_all);y3(:,2:(frame_all+1))];
%%%%%%加hamming