【图像分割】基于灰狼算法优化Renyi熵实现图像多阈值分割附Matlab代码

本文介绍了一种基于灰狼优化算法改进的Renyi熵法,用于图像多级阈值分割。通过灰狼优化算法减少计算时间,提高图像分割效率,适用于复杂图像的多级分割问题。提供的Matlab代码示例展示了算法的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 内容介绍

在图像阈值分割方法中,Renyi熵法因其显著效能而得到大量应用.为了更好地发挥Renyi熵在图像分割中的应用,提出把Renyi熵法扩展到图像多级阈值化问题.然而,由于计算时间复杂度上的高要求,很难把这种有效的技术推广到复杂图像多级阈值化问题.为减少本方法的计算时间,应用灰狼优化算法实施最佳阈值的搜索.实验结果表明,本方法能有效地对图像进行多级分割,并且显著降低计算时间.

2 部分代码

% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fhandle,fnonlin)

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize