✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
声音自动分类是语音识别领域的一项重要任务,广泛应用于语音交互、语音控制和医疗诊断等领域。本文提出了一种基于主成分分析(PCA)和最近邻(KNN)相结合的声音自动分类方法。PCA用于提取声音特征的降维表示,KNN用于基于降维特征进行分类。实验结果表明,该方法在多个声音数据集上取得了较高的分类精度,证明了其有效性和实用性。
引言
声音自动分类旨在根据声音特征将声音样本分类到预定义的类别中。传统的声音自动分类方法通常依赖于手工提取的特征,这需要大量的专业知识和经验。近年来,随着机器学习和深度学习的发展,基于数据驱动的特征提取和分类方法得到了广泛的关注。
方法
本文提出的方法包括以下步骤:
-
**特征提取:**使用梅尔频谱系数(MFCC)从声音样本中提取特征。MFCC是一种广泛用于语音识别领域的特征提取算法,它可以有效地捕捉声