【语音识别】基于主成分分析PCA结合最近邻KNN实现声音自动分类附matlab代码

本文介绍了一种基于主成分分析(PCA)和最近邻(KNN)的声音自动分类方法,用于语音识别。通过PCA进行特征降维,然后用KNN进行分类,实验证明该方法在多个数据集上具有高精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

声音自动分类是语音识别领域的一项重要任务,广泛应用于语音交互、语音控制和医疗诊断等领域。本文提出了一种基于主成分分析(PCA)和最近邻(KNN)相结合的声音自动分类方法。PCA用于提取声音特征的降维表示,KNN用于基于降维特征进行分类。实验结果表明,该方法在多个声音数据集上取得了较高的分类精度,证明了其有效性和实用性。

引言

声音自动分类旨在根据声音特征将声音样本分类到预定义的类别中。传统的声音自动分类方法通常依赖于手工提取的特征,这需要大量的专业知识和经验。近年来,随着机器学习和深度学习的发展,基于数据驱动的特征提取和分类方法得到了广泛的关注。

方法

本文提出的方法包括以下步骤:

  1. **特征提取:**使用梅尔频谱系数(MFCC)从声音样本中提取特征。MFCC是一种广泛用于语音识别领域的特征提取算法,它可以有效地捕捉声

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值