✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
煤矿瓦斯灾害是矿井安全生产的主要威胁之一,其突发性强、危害性大,给矿工的生命安全和煤矿生产造成严重损失。瓦斯浓度预测是预防和控制瓦斯灾害的重要手段,能够为矿井安全生产提供有效保障。近年来,随着人工智能技术的快速发展,神经网络在瓦斯浓度预测领域展现出巨大潜力。宽度学习神经网络 (Broad Learning System, BLS) 作为一种新型神经网络,具有结构简单、训练速度快、泛化能力强等优势,近年来在瓦斯浓度预测方面得到了广泛应用。然而,传统BLS模型存在参数优化问题,容易陷入局部最优,影响预测精度。
为了提升BLS模型的预测精度,本文提出了一种基于雾凇优化算法 (RIME) 优化BLS模型的瓦斯浓度回归预测方法。RIME算法是一种新型的元启发式优化算法,其灵感来源于雾凇的生长过程,具有较强的全局搜索能力和局部搜索能力,能够有效解决传统优化算法容易陷入局部最优的问题。
1. 宽度学习神经网络BLS模型
BLS模型是一种基于增强学习的浅层神经网络,其结构由输入层、增强层和输出层构成。
-
输入层: 输入层负责接收输入数据。
-
增强层: 增强层由多个特征节点组成,每个节点对应一个特征映射函数。
-
输出层: 输出层负责输出预测结果。
BLS模型的训练过程主要包括两个步骤:
-
特征节点增广: 通过不断添加特征节点来增强模型的特征表达能力。
-
权重矩阵求解: 通过最小化损失函数,求解连接特征节点与输出层的权重矩阵。
2. 雾凇优化算法RIME
RIME算法是一种基于自然现象的元启发式优化算法,其灵感来源于雾凇的生长过程。在雾凇的生长过程中,水分子在低温环境下凝结成冰晶,并逐渐附着在树枝、物体表面,形成冰晶层,最后形成雾凇。
RIME算法将优化问题的解空间比喻为树枝,将优化目标比喻为雾凇。算法通过模拟雾凇的生长过程,不断搜索解空间,找到最优解。
3. 基于RIME优化BLS模型的瓦斯浓度回归预测方法
本文提出的方法利用RIME算法优化BLS模型的参数,以提高其瓦斯浓度预测精度。具体步骤如下:
-
数据预处理: 对采集的瓦斯浓度数据进行预处理,包括数据清洗、归一化等。
-
BLS模型构建: 构建BLS模型,并随机初始化模型参数。
-
RIME算法优化: 使用RIME算法优化BLS模型的权重矩阵,以提高模型的预测精度。
-
瓦斯浓度预测: 利用优化后的BLS模型对未来的瓦斯浓度进行预测。
4. 实验结果与分析
本文利用实际矿井的瓦斯浓度数据对提出的方法进行验证,并将结果与其他方法进行比较。实验结果表明,基于RIME优化BLS模型的瓦斯浓度预测方法具有更高的预测精度和更强的鲁棒性,有效提升了瓦斯浓度预测的效果。
5. 结论
本文提出了一种基于RIME优化BLS模型的瓦斯浓度回归预测方法。该方法利用RIME算法的全局搜索能力和局部搜索能力,有效解决了传统BLS模型参数优化问题,提升了模型的预测精度。实验结果表明,该方法具有良好的预测效果,能够为矿井安全生产提供有效保障。
6. 未来展望
未来研究将进一步探索RIME算法的改进方法,并将其应用于其他矿井安全生产领域,例如地质灾害预测、矿井通风优化等,为煤矿安全生产提供更加全面的解决方案。
⛳️ 运行结果
📣 部分代码
%% 种群初始化
function [X]=initialization(N,dim,up,down)
if size(up,1)==1
X=rand(N,dim).*(up-down)+down;
end
if size(up,1)>1
for i=1:dim
high=up(i);low=down(i);
X(:,i)=rand(1,N).*(high-low)+low;
end
end
end
🔗 参考文献
[1] 王雨虹,王淑月,王志中,等.基于改进蝗虫算法优化长短时记忆神经网络的多参数瓦斯浓度预测模型研究[J].传感技术学报, 2021, 034(009):1196-1203.DOI:10.3969/j.issn.1004-1699.2021.09.009.
[2] 智登奎,李国勇.基于遗传算法优化神经网络瓦斯浓度预测[J].矿山机械, 2013, 41(4):4.DOI:CNKI:SUN:KSJX.0.2013-04-036.
[3] 刘奕君,赵强,郝文利.基于遗传算法优化BP神经网络的瓦斯浓度预测研究[J].矿业安全与环保, 2015, 42(2):5.DOI:10.3969/j.issn.1008-4495.2015.02.014.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类