✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室
🍊个人信条:格物致知,期刊达人。
🔥 内容介绍
无人驾驶车辆的轨迹跟踪是其安全性和可靠性的关键因素。精确、稳健的轨迹跟踪算法能够使车辆在各种复杂路况下,例如双移线、圆形轨迹、直线及弯道等,实现平稳、安全的行驶。模型预测控制(MPC)及其非线性变体(NMPC)因其能够有效处理约束条件和预测未来系统状态的特点,成为解决这一问题的有力工具。本文将深入探讨MPC和NMPC在无人驾驶车辆轨迹跟踪中的应用,重点分析其在双移线、圆形轨迹、直线和弯道等典型场景下的性能表现及优缺点。
一、 无人驾驶车辆动力学模型
精确的车辆动力学模型是MPC和NMPC算法的基础。常见的车辆动力学模型包括自行车模型、单车模型和多车身模型等。自行车模型因其简洁性和计算效率高而被广泛应用于轨迹跟踪控制中。该模型将车辆简化为一个具有两个轮子的自行车,忽略了车辆侧倾和悬挂系统的影响。其状态方程通常可以表示为:
ẋ = v cos(ψ + β)
ẏ = v sin(ψ + β)
ψ̇ = ω
β = arctan(lr/(lf + lr) * tan(δ))
其中,x, y表示车辆质心坐标;ψ表示车辆航向角;v表示车辆速度;ω表示车辆角速度;δ表示前轮转角;lf, lr分别表示车辆前轴和后轴到质心的距离;β表示侧偏角。
在更复杂的场景下,例如考虑车辆侧倾和悬挂系统的影响时,则需要采用更精确的多车身模型。模型的精度和复杂度需要根据实际应用需求进行权衡。
二、 模型预测控制(MPC)及其在轨迹跟踪中的应用
MPC是一种先进的控制算法,其核心思想是通过优化一个有限时间范围内的控制序列,使系统状态尽可能地接近期望轨迹。在每一控制周期,MPC算法都会根据当前状态和预测模型,求解一个优化问题,得到未来一段时间内的最佳控制策略,并仅执行该序列中的第一个控制动作。然后,在下一个控制周期,算法会重新进行预测和优化,从而实现闭环控制。
在无人驾驶车辆轨迹跟踪中,MPC算法的优势在于能够有效处理车辆的动力学约束和轨迹约束,例如速度限制、转向角限制、加速度限制等。通过在优化问题中加入这些约束,MPC能够确保车辆在跟踪轨迹的同时,满足安全性和舒适性的要求。
针对不同的轨迹类型,MPC算法需要进行相应的参数调整。例如,在直线轨迹跟踪中,主要需要控制车辆的横向偏差和航向角偏差;而在弯道轨迹跟踪中,则需要考虑车辆的曲率和侧向加速度。
三、 非线性模型预测控制(NMPC)在轨迹跟踪中的应用
与线性MPC相比,NMPC能够处理非线性系统。由于车辆动力学模型本身就是一个非线性系统,NMPC能够更精确地描述车辆的运动特性,从而提高轨迹跟踪精度。NMPC通常采用数值优化方法,例如内点法或SQP法,求解非线性优化问题。
在双移线等复杂轨迹跟踪场景中,NMPC的优势尤为明显。双移线轨迹包含多个弯道和直线段,其轨迹变化剧烈,线性MPC可能难以精确跟踪。NMPC能够更准确地预测车辆在复杂轨迹上的运动,并生成更平滑、更安全的控制策略。
四、 不同轨迹类型下的轨迹跟踪策略
-
直线轨迹跟踪: 直线轨迹跟踪相对简单,MPC和NMPC都可以取得较好的效果。主要控制目标是保持车辆行驶在直线上,控制变量为转向角。
-
弯道轨迹跟踪: 弯道轨迹跟踪需要考虑车辆的侧向加速度和转向角限制。MPC和NMPC可以通过调整权重系数来平衡跟踪精度和舒适性。
-
圆形轨迹跟踪: 圆形轨迹跟踪需要精确控制车辆的转向角和速度,以保持稳定的圆周运动。NMPC由于其对非线性系统的适应性更强,在此场景下表现更优。
-
双移线轨迹跟踪: 双移线轨迹是复杂轨迹的典型代表,包含多个转向操作。NMPC凭借其对非线性动力学和约束的处理能力,能够在保证安全和舒适的前提下,实现精确的轨迹跟踪。
五、 结论与展望
MPC和NMPC是解决无人驾驶车辆轨迹跟踪问题的有效方法。NMPC在处理非线性动力学和复杂轨迹方面表现出更强的能力。然而,NMPC的计算复杂度较高,需要更强大的计算资源。未来研究方向包括:
-
提高计算效率: 开发更高效的数值优化算法,降低NMPC的计算负担,使其能够满足实时控制的要求。
-
鲁棒性增强: 研究在存在模型不确定性和外界干扰的情况下,如何提高MPC和NMPC的鲁棒性。
-
多目标优化: 将舒适性、安全性等多个目标融入到优化问题中,实现更优的轨迹跟踪控制策略。
-
与感知系统的融合: 将感知信息与MPC/NMPC算法结合,实现更智能、更安全的轨迹跟踪。
总之,MPC和NMPC在无人驾驶车辆轨迹跟踪领域具有广阔的应用前景,不断深入的研究将推动无人驾驶技术的发展,最终实现安全可靠的自动驾驶。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
博客擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇