LS-SDMTSP:基于雪雁算法( Snow Geese Algorithm, SGA)的大规模单仓库多旅行商问题(LS-SDMTSP)求解研究,MATLAB代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在物流配送、仓储管理、智能制造等领域,大规模单仓库多旅行商问题(LS-SDMTSP)是提升效率的关键瓶颈。该问题要求从单一仓库出发,调度多辆运输工具(旅行商)遍历成百上千个客户点,在确保每个客户仅被访问一次的前提下,实现总行驶距离最短、成本最低或时间最优。传统优化算法面对成百上千个客户点时,往往因解空间爆炸陷入局部最优,而雪雁算法(SGA, Snow Geese Algorithm) 凭借群体协作的搜索机制和对复杂空间的高效探索能力,为 LS-SDMTSP 提供了突破性的求解方案。

一、LS-SDMTSP 的核心挑战:大规模场景下的优化困境

单仓库多旅行商问题(SDMTSP)是经典旅行商问题(TSP)的扩展,当客户点数量超过 1000 个时,便进入 “大规模” 范畴(LS-SDMTSP),其复杂性呈指数级增长,给求解带来多重挑战。

(一)问题本质与约束条件

LS-SDMTSP 的核心要素包括:

  • 单一仓库:所有旅行商从同一仓库出发,完成任务后返回仓库(路径闭合性约束)。
  • 多旅行商协同:m 个旅行商共同负责 n 个客户点的访问,每个客户点仅被一个旅行商访问(唯一性约束)。
  • 大规模客户群:n 通常在 1000 以上,客户点的空间分布可能呈现聚集(如城市商圈)与分散(如郊区居民点)并存的特点。

实际场景中还需满足额外约束:

  • 旅行商容量限制:若运输工具存在载重或容积限制(如配送车辆的最大载货量),需将客户点按需求分配给合适的旅行商。
  • 时间窗口约束:部分客户点有严格的访问时间要求(如工厂收货时间、居民在家时段),路径规划需规避时间冲突。

例如,某电商物流中心需向 5000 个社区客户配送包裹,20 辆配送车从中心仓库出发,需在 12 小时内完成配送并返回,每辆车的最大载重限制为 2 吨,部分客户要求 18:00 前送达 —— 这类场景正是 LS-SDMTSP 的典型代表。

(二)大规模场景的求解难点

  1. 解空间爆炸:当 n=1000、m=10 时,可能的路径组合数超过 (n!)/(m!×(n/m)!),远超传统枚举法的处理能力,甚至启发式算法也难以遍历有效解区域。
  1. 协同优化难题:旅行商之间的任务分配与路径规划相互耦合 —— 某客户点分配给旅行商 A 可能缩短 A 的路径,却可能导致旅行商 B 的路径大幅延长,全局最优解难以通过局部优化获得。
  1. 计算效率瓶颈:大规模问题对算法的时间复杂度极为敏感,即使是 O (n²) 的算法,在 n=10000 时也需要千万级运算量,普通计算机难以在合理时间内完成求解。

传统算法如遗传算法、粒子群优化在小规模 SDMTSP 中表现尚可,但在 LS-SDMTSP 中常出现收敛缓慢、解质量差等问题,亟需更高效的优化策略。

二、雪雁算法(SGA):群体智慧的优化范式

雪雁算法灵感来源于北美的雪雁在长途迁徙中的群体行为,其 “人字形编队” 的节能飞行、“领头雁轮换” 的动态协作机制,为解决大规模优化问题提供了天然启发。

(一)雪雁行为的算法映射

雪雁的迁徙行为包含三大核心特征,被抽象为 SGA 的关键机制:

  1. 人字形飞行的信息共享:雪雁通过人字形编队减少空气阻力,同时通过视觉信号实时调整位置。算法中,每个 “雪雁个体” 代表一个 LS-SDMTSP 的解(即一组路径方案),个体间通过信息交互共享优质解片段(如某段高效子路径)。
  1. 领头雁的动态选择:飞行中,体力最强的雪雁担任领头雁,带领群体前进,疲劳后由其他个体替换。SGA 中,适应度最高的个体(最优解)成为 “领头雁”,引导其他个体向其学习,同时允许次优个体竞争领头位置,避免陷入局部最优。
  1. 边缘雁的探索行为:编队边缘的雪雁可能脱离编队探索新路线,发现更优路径后引领群体转向。SGA 中,部分个体通过随机扰动跳出当前搜索区域,增强算法的全局探索能力,尤其适合大规模解空间的遍历。

⛳️ 运行结果

图片

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值