Transformer-BiLSTM 5模型多变量回归预测一键对比 (多输入单输出)Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在当今这个数据爆炸的时代,多变量回归预测就像是一把神奇的钥匙,能够帮助我们打开未来趋势的大门,在金融市场预测股价走势、在气象领域预知气候变化、在工业生产中保障设备稳定运行…… 发挥着不可或缺的作用。今天,咱们就一起来聊聊基于 Transformer - BiLSTM、Transformer、CNN - BiLSTM、BiLSTM、CNN 这五个超厉害的模型进行多变量回归预测的那些事儿 。

想象一下,这些模型就像是一群身怀绝技的超级英雄,各自有着独特的本领。BiLSTM 就像是一位记忆力超群的大侠,能够记住时间序列数据中的过去和未来信息,在处理文本情感分析、语音识别等任务时,它通过双向的循环结构,把前文和后文的内容都考虑进去,让分析和预测更加准确 。

CNN 则像是一位拥有敏锐洞察力的侦探,擅长捕捉数据中的局部特征。在图像识别的世界里,它能够精准地识别出图像中的各种物体,就像从一幅复杂的画中迅速找出隐藏的线索;在多变量回归预测中,它对那些具有明显局部模式的数据处理得得心应手,比如分析一段时间内的气温、湿度等气象数据对空气质量的影响时,它能快速抓住关键信息 。

Transformer 这位大侠可不得了,它凭借着自注意力机制这一独门秘籍,能够在处理序列数据时,瞬间捕捉到长距离的依赖关系。在自然语言处理的舞台上,它大显身手,翻译、文本生成等任务都不在话下;在多变量回归预测中,面对那些变量之间存在复杂关联的数据,它也能轻松应对,比如分析全球经济指标之间的相互影响时,Transformer 能敏锐地察觉到各个指标之间的潜在联系 。

CNN - BiLSTM 则像是两位大侠的合体,兼具了 CNN 提取局部特征和 BiLSTM 处理时间序列的能力,就像一个既能在近处仔细观察,又能在远处纵观全局的高手,在面对那些既有时序特征又有局部特征的数据时,它能发挥出强大的实力 。

而 Transformer - BiLSTM 更是融合了 Transformer 捕捉长距离依赖和 BiLSTM 对时间序列局部特征的捕捉能力,成为了一个全方位的预测高手,在金融市场的复杂波动预测、气象数据的长期趋势判断等场景中,都有着出色的表现 。

这五个模型各具特色,它们之间的组合与较量,会碰撞出怎样的火花呢?让我们接着往下看 !

模型原理逐个看

CNN:局部特征提取能手

CNN,全称卷积神经网络(Convolutional Neural Network),它的结构就像是一个精心设计的特征提取工厂。这个工厂里最核心的 “工人” 就是卷积层和池化层 。

卷积层里,一个个小而强大的卷积核在数据上滑动,就像一把把精细的小刷子,仔细地刷过每一个局部区域,提取出独特的特征。比如在处理图像时,不同大小的卷积核能够捕捉到图像中不同尺度的特征,小的卷积核可以捕捉到像边缘这样的细节信息,大一点的卷积核则能捕捉到更宏观的形状特征 。每一次卷积操作,都是对局部数据的一次深入挖掘,把那些隐藏在数据中的关键信息提取出来,生成新的特征图 。

池化层则像是一个高效的信息筛选器,它的主要任务是对卷积层提取的特征图进行降维处理。常见的池化方式有最大池化和平均池化 。最大池化就像是在一堆宝石中挑选出最璀璨的那颗,它选取特征图局部区域中的最大值作为该区域的代表,这样可以突出最显著的特征;平均池化则像是把宝石们平均分配,计算局部区域的平均值,保留整体的特征趋势 。通过池化操作,不仅减少了数据量,降低了计算复杂度,还能在一定程度上防止过拟合,让模型更加鲁棒 。

BiLSTM:把握上下文的专家

BiLSTM,也就是双向长短期记忆网络(Bidirectional Long Short-Term Memory),是基于 LSTM 发展而来的 。LSTM 就像是一个记忆力超强的人,能够记住长时间的信息,解决了传统循环神经网络(RNN)在处理长序列时遇到的梯度消失和梯度爆炸问题 。

BiLSTM 则更厉害,它通过双向处理的方式,同时考虑了序列的正向和反向信息 。在处理时间序列数据时,正向的 LSTM 从序列的开头开始,依次处理每个时间步的数据,记住过去的信息;反向的 LSTM 则从序列的末尾开始,逆向处理数据,捕捉未来的上下文信息 。然后,将这两个方向的隐藏状态在每个时间步进行拼接,这样就得到了包含前后文完整信息的表示 。

比如说在进行文本情感分析时,一个句子中的某个词的情感倾向,不仅取决于它前面的词,也可能受到后面词的影响 。BiLSTM 就能够同时捕捉到这些前后文的信息,准确判断出这个词以及整个句子的情感色彩 ,在处理语音识别、时间序列预测等需要考虑上下文信息的任务中,BiLSTM 都有着出色的表现 。

CNN - BiLSTM:强强联合

CNN - BiLSTM 模型,就像是把两个超级英雄的力量融合在了一起 。首先,CNN 发挥它强大的局部特征提取能力,对输入数据进行初步处理 。比如在处理多变量时间序列数据时,CNN 能够敏锐地捕捉到每个时间步附近的局部模式和特征,将这些局部特征提取出来,形成新的特征表示 。

然后,这些由 CNN 提取的局部特征被送入 BiLSTM 中 。BiLSTM 则利用它对上下文信息的强大捕捉能力,进一步处理这些特征 。它会考虑这些局部特征在整个时间序列中的位置和关系,结合前后文的信息,对数据进行更深入的分析和理解 。通过这种方式,CNN - BiLSTM 模型既能够捕捉到数据的局部细节,又能够把握整体的时间序列特征,实现了优势互补,在很多复杂的多变量回归预测任务中都展现出了强大的性能 。

Transformer:注意力机制的强者

Transformer 模型可以说是深度学习领域的一颗璀璨明星,它的核心创新点就是自注意力机制(Self - Attention Mechanism) 。自注意力机制打破了传统循环神经网络(RNN)和卷积神经网络(CNN)的局限性,能够在处理序列数据时,直接捕捉到序列中各个位置之间的依赖关系,无论它们之间的距离有多远 。

简单来说,自注意力机制在计算某个位置的表示时,会同时关注序列中的其他所有位置 。它通过计算输入序列中每个位置与其他位置之间的注意力分数,来确定每个位置对当前位置的重要程度 。然后,根据这些注意力分数对其他位置的特征进行加权求和,得到当前位置的新表示 。这样,模型就能在瞬间捕捉到长距离的依赖关系,让信息的传递更加高效 。

除了自注意力机制,Transformer 还包含多头注意力(Multi - Head Attention)和位置编码(Positional Encoding)等重要组件 。多头注意力机制就像是多个不同视角的观察者同时观察数据,它通过并行计算多个自注意力头,每个头关注输入序列的不同部分,从而捕捉到更丰富的信息,增强了模型的多样性和鲁棒性 。

位置编码则是为了解决 Transformer 模型本身无法捕捉序列中位置信息的问题 。因为 Transformer 没有像 RNN 那样的递归结构,所以需要额外的机制来编码位置信息 。位置编码通过加入特定的数学函数,使模型能够区分不同位置的元素,让模型在处理序列数据时,不仅能关注元素本身的特征,还能考虑它们的位置关系 。

Transformer - BiLSTM:融合创新

Transformer - BiLSTM 模型是一种融合创新的尝试,它结合了 Transformer 捕捉长距离依赖的能力和 BiLSTM 对时间序列局部特征的捕捉能力 。

Transformer 在模型中首先发挥作用,它利用自注意力机制对输入的多变量序列数据进行处理,捕捉到数据中长距离的依赖关系,将这些全局信息进行整合 。比如在分析金融市场的多变量数据时,Transformer 能够发现不同金融指标在较长时间跨度内的相互影响关系 。

然后,BiLSTM 接过 Transformer 处理后的结果 。BiLSTM 通过双向的结构,进一步分析这些数据的局部时序特征 。它能够在 Transformer 提供的全局信息基础上,更加细致地捕捉每个时间步附近的信息变化,增强对局部时间序列的理解 。这种融合方式,让模型在面对复杂的多变量回归预测任务时,既能从宏观上把握数据的整体趋势,又能从微观上分析局部的变化,从而提高预测的准确性 。

⛳️ 运行结果

📣 部分代码

N=length(output);   %全部样本数目

testNum=round(N*0.9);   %设定测试样本数目

trainNum=N-testNum;    %计算训练样本数目

% 随机生成训练集、测试集

k = randperm(size(input,1));

% 训练集——1900个样本

P_train=input(k(1:trainNum),:)';

T_train=output(k(1:trainNum))';

% 测试集——100个样本

P_test=input(k(trainNum+1:testNum),:)';

T_test=output(k(trainNum+1:testNum))';

%% 归一化

% 训练集

[Pn_train,inputps] = mapminmax(P_train,-1,1);

Pn_test = mapminmax('apply',P_test,inputps);

% 测试集

[Tn_train,outputps] = mapminmax(T_train,-1,1);

 Tn_test = mapminmax('apply',T_test,outputps);

Pn_train = Pn_train';

 Pn_test = Pn_test';

Tn_train = Tn_train';

 Tn_test = Tn_test';

%% 定义优化参数

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值