66基于极限学习机结合Adaboost(ELM-Adaboost)的数据多变量回归预测 (多输入单输出)Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数据分析与预测领域,“多输入单输出” 是极为常见的场景 —— 比如根据某地区的温度、湿度、风速、降水量等多个气象指标,预测次日的 PM2.5 浓度;或是依据产品的原材料成本、生产时长、运输距离、市场供需等变量,预测最终的销售价格。这类场景的核心挑战在于:如何高效处理多个相关输入变量,精准捕捉变量间的复杂关联,最终输出稳定可靠的单一预测结果。

而今天要给大家介绍的 ELM-Adaboost 模型,正是应对这类 “多输入单输出” 多变量回归预测的 “硬核工具”。它将极限学习机(ELM)的快速训练优势与 Adaboost 算法的集成学习能力相结合,既解决了传统单模型处理多变量时 “欠拟合” 或 “训练慢” 的问题,又能通过弱学习器集成提升预测精度,在工业生产、环境监测、经济预测等领域都有着极高的实用价值。

一、先搞懂基础:ELM 与 Adaboost 各自的 “过人之处”

在深入 ELM-Adaboost 的融合逻辑前,我们得先理清两个核心组件的 “基本功”—— 毕竟好的 “组合拳”,离不开每个 “招式” 的扎实基础。

1. 极限学习机(ELM):快速处理多变量的 “轻骑兵”

传统的神经网络(如 BP 神经网络)在处理多变量回归时,往往需要反复调整权重、迭代训练,不仅耗时久,还容易陷入局部最优解。而 ELM(Extreme Learning Machine)作为一种单隐层前馈神经网络,恰恰弥补了这些短板。

它的核心逻辑很简单:随机初始化输入层到隐层的权重和偏置,无需迭代调整,仅通过一次矩阵运算就能求解隐层到输出层的权重。这种 “随机初始化 + 解析求解” 的模式,让 ELM 在处理多输入变量时具备三大优势:

  • 训练速度极快:面对 1000 + 维度的多变量数据,也能在秒级或分钟级完成训练,远超传统神经网络;
  • 泛化能力强:随机初始化的隐层参数能降低过拟合风险,尤其适合多变量间存在 “弱关联” 的场景;
  • 结构简洁:仅需设置隐层神经元数量这一个关键参数,无需复杂调参,新手也能快速上手。

不过,ELM 也有明显的 “软肋”:由于隐层参数随机生成,单一个 ELM 模型的预测精度可能不够稳定,尤其在多变量关系极为复杂(如存在非线性、滞后性关联)时,容易出现 “预测偏差”。

2. Adaboost:让弱模型变 “强” 的集成 “指挥官”

Adaboost(Adaptive Boosting)是一种经典的集成学习算法,它的核心思想是 “让多个‘弱学习器’协同工作,通过动态调整每个学习器的权重,最终集成出一个‘强学习器’”。

具体到回归任务中,Adaboost 的运作流程就像一位 “指挥官”:

  1. 首先,用初始权重训练第一个弱学习器(比如一个简单的 ELM 模型);
  1. 接着,根据第一个弱学习器的预测误差,给 “预测不准” 的样本赋予更高权重,“预测准” 的样本降低权重;
  1. 然后,用调整后的样本权重训练第二个弱学习器,重点关注上一轮 “没学好” 的样本;
  1. 重复上述过程,训练 N 个弱学习器后,按每个学习器的误差大小分配 “投票权重”(误差越小,权重越高);
  1. 最终的预测结果,由所有弱学习器的预测值按权重加权求和得到。

Adaboost 的优势在于:它能通过 “聚焦误差样本 + 加权集成”,把多个精度一般的弱学习器,变成一个精度远超单个模型的强学习器,完美解决了 ELM 单模型 “精度不稳定” 的问题。

⛳️ 运行结果

📣 部分代码

N=length(output);   %全部样本数目

testNum=round(N*0.9);   %设定测试样本数目

trainNum=N-testNum;    %计算训练样本数目

% 随机生成训练集、测试集

k = randperm(size(input,1));

% 训练集——1900个样本

P_train=input(k(1:trainNum),:)';

T_train=output(k(1:trainNum))';

% 测试集——100个样本

P_test=input(k(trainNum+1:testNum),:)';

T_test=output(k(trainNum+1:testNum))';

%% 归一化

% 训练集

[Pn_train,inputps] = mapminmax(P_train,-1,1);

Pn_test = mapminmax('apply',P_test,inputps);

% 测试集

[Tn_train,outputps] = mapminmax(T_train,-1,1);

 Tn_test = mapminmax('apply',T_test,outputps);

Pn_train = Pn_train';

 Pn_test = Pn_test';

Tn_train = Tn_train';

 Tn_test = Tn_test';

%% 定义优化参数

🔗 参考文献

[1]张晓明,曹国清,陈增强,等.基于AdaBoost-PSO-ELM算法的滑坡位移预测研究[J].电子技术应用, 2019, 45(2):5.DOI:10.16157/j.issn.0258-7998.182981.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值