【路径规划】基于A_Star算法多机器人仓库有效载荷运输附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代化仓库的自动化运营中,大重量、多批次 payload(如托盘货物、重型包裹)的运输是核心需求之一。传统单机器人运输面临 “载重有限、效率低” 的瓶颈(如单机器人最大载重 5kg,无法处理 50kg 以上货物),而多机器人协同运输虽能突破载重限制,却需解决 “团队动态组建、路径避障、动作一致性” 等难题。

本文提出的先进多机器人 payload 运输系统,通过将 “多机器人一致性行为(Agreement)” 融入仓库运输场景,结合 “市场机制分配 + A * 路径规划” 的协同策略与集中式控制,实现了 “载重适配、路径无碰撞、动态响应” 的高效运输。该系统不仅能根据 payload 重量自动组建机器人团队(如 53.5kg 货物需 11 台 5kg 载重机器人协同),还能在复杂仓库环境中完成多任务调度,为自动化仓储物流提供了可靠的技术方案。

一、系统核心设计:从行为集成到协同机制

1. 多机器人一致性行为(Agreement)的运输场景适配

“一致性行为” 是多机器人协同的核心逻辑 —— 确保多台机器人在位置、姿态、动作节奏上达成统一,避免因个体偏差导致 payload 倾斜、掉落或运输效率下降。在仓库 payload 运输中,该行为主要体现在两个维度:

  • 姿态一致性:运输过程中,所有参与机器人需保持与 payload 的相对位置固定(如围绕方形 payload 均匀分布,间距误差≤5cm),通过实时姿态估计(如激光雷达 + 视觉定位)调整位置,确保 payload 受力均衡;
  • 运动一致性:机器人团队需同步启停、转向、调速(速度偏差≤0.1m/s),避免因部分机器人速度过快导致 payload 偏移。系统通过分布式通信(如 WiFi6 低延迟传输)实现机器人间的状态同步,确保动作协同。

以 53.5kg payload 运输为例:单机器人最大载重 5kg,系统根据 “总载重≥payload 重量 + 安全冗余(5%)” 原则,自动计算需 11 台机器人(11×5=55kg>53.5kg);随后通过一致性行为控制,将 11 台机器人调度至 payload 周围的预设点位(如环形分布,每台机器人负责 1/11 的承重),确保抓取时受力均匀,运输中姿态稳定。

2. 市场机制:机器人与 payload 的最优匹配

为解决 “多机器人 - 多 payload” 的动态分配问题,系统采用市场机制(Market-based Approach),以 “proximity(距离)” 和 “capacity(载重)” 为核心指标,实现机器人资源的高效调度:

  • 需求发布:系统将每个 payload 视为 “任务需求”,发布其关键信息(重量、当前位置、目标投放区、优先级);
  • 机器人投标:所有空闲机器人根据自身状态(当前位置到 payload 的距离、剩余电量、载重能力)计算 “投标成本”—— 距离越近、载重越匹配,成本越低;
  • 最优分配:系统选择 “总成本最低” 的机器人组合(如 30kg payload 优先分配 3 台 10kg 载重且距离最近的机器人),避免资源浪费(如用 10 台 5kg 机器人运输 10kg payload)。

该机制的优势在于:

  • 动态适配性:当仓库新增 payload 或机器人故障时,能快速重新分配资源(如某机器人电量不足退出,系统立即补充距离次近的空闲机器人);
  • 效率优先:优先选择近程机器人,减少空驶距离(如仓库东侧的 payload 优先分配东侧机器人,平均空驶距离降低 40%)。

3. A* 路径规划:从 “单机避障” 到 “团队编队导航”

系统采用A* 搜索算法,结合集中式控制,为两类对象提供无碰撞路径:

  • 阶段 1:机器人到 payload 的单机路径

仓库环境中存在货架、立柱、其他作业设备等障碍物,系统通过 A算法的 “启发式函数(如曼哈顿距离 + 障碍物代价)”,为每台机器人规划从当前位置到 payload 抓取点的最短路径。例如:在含 5 个货架的仓库中,A 能自动避开货架间隙(宽度<机器人直径的区域),规划出 “绕货架边缘→直达抓取点” 的路径,平均路径长度比传统 Dijkstra 算法缩短 15%。

  • 阶段 2:机器人 - payload 团队的编队路径

抓取 payload 后,系统将 “机器人 + payload” 视为一个整体编队,基于 A* 算法规划从抓取点到投放区的路径。此时需满足两个约束:

  1. 编队整体避障:路径需预留 “编队外接圆半径 + 安全距离(如 0.3m)” 的空间,避免与障碍物碰撞;
  1. 编队形态保持:通过一致性行为控制,确保机器人在移动中保持预设队形(如方形编队、直线编队),队形偏移量≤10cm。

⛳️ 运行结果

📣 部分代码

if abs(direction(1)) > abs(direction(2))

dx = sign(direction(1));

dy = 0;

else

dx = 0;

dy = sign(direction(2));

end

end

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值