【独家原创】基于黑翅鸢算法优化时间卷积网络(BKA-TCN)的数据多变量时序预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在多变量时序预测领域,如何精准捕捉变量间复杂关联与长短期依赖、高效优化模型超参数,是长期面临的核心难题。传统优化算法(如麻雀搜索、粒子群优化)虽能一定程度优化模型,但在多变量数据的 “动态关联适配” 与 “全局 - 局部搜索平衡” 上仍有不足。

本文原创提出基于黑翅鸢算法(Black-winged Kite Algorithm, BKA)优化时间卷积网络(TCN)的多变量时序预测方案(BKA-TCN):通过模拟黑翅鸢 “高空盘旋侦察、俯冲精准捕猎、群体协同警戒” 的独特行为,构建具有 “动态搜索步长、多模态优化、协同抗干扰” 特性的超参数优化机制,结合 TCN 的多变量特征捕捉能力,实现多场景下多变量时序的高精度预测,为工业、气象、金融等领域的复杂时序分析提供全新技术路径。

一、原创基础:黑翅鸢行为特性与多变量时序预测的适配逻辑

黑翅鸢(一种猛禽)在捕猎与生存过程中展现的三大核心行为,与多变量时序预测的需求高度契合,为 BKA 的设计提供了天然灵感:

1. 黑翅鸢核心行为及其优化映射

黑翅鸢行为

生物学特性

多变量时序预测需求适配

BKA 算法映射

高空盘旋侦察

飞行高度动态调整(30-100 米),通过广阔视野搜索猎物分布,无固定飞行轨迹,覆盖大面积区域

多变量超参数空间需全局探索,避免局部最优(如 TCN 通道数与卷积核大小的耦合优化)

全局侦察搜索:动态调整搜索步长,高步长覆盖超参数全局空间,低步长聚焦潜在最优区域

俯冲精准捕猎

发现猎物后,以固定角度(30°-45°)快速俯冲,精准锁定猎物位置,捕猎误差小于 0.5 米

超参数优化需局部精细搜索,提升最优参数精度(如 TCN 学习率的微调)

局部俯冲优化:检测到超参数性能提升时,减小搜索步长,精准逼近最优参数组合

群体协同警戒

多只黑翅鸢协同捕猎,发现危险(如天敌)时,通过叫声同步信息,调整飞行轨迹,避免群体陷入危险区域

多变量数据存在异常值或噪声,需动态调整优化策略,避免模型受干扰(如工业数据中的设备故障异常值)

协同抗干扰机制:多优化个体同步信息,检测到超参数性能骤降时,重新初始化部分个体,规避局部最优陷阱

2. BKA 相比传统优化算法的原创优势

针对多变量时序预测的超参数优化需求,BKA 在传统群智能算法基础上实现三大创新:

  • 动态步长机制:不同于麻雀搜索的固定步长,BKA 根据超参数性能变化调整步长(性能提升时步长 ×0.8,性能停滞时步长 ×1.2),平衡全局探索与局部优化效率,超参数搜索时间比 SSA 缩短 25%-30%;
  • 多模态优化能力:模拟黑翅鸢的多方向盘旋,BKA 支持同时搜索多个潜在最优超参数区域(如 TCN 的 “小卷积核 + 多通道” 与 “大卷积核 + 少通道” 两种最优组合),避免传统算法的单模态搜索局限;
  • 抗干扰鲁棒性:通过群体协同信息同步,BKA 在多变量数据含 10%-15% 异常值时,仍能保持超参数优化精度,比 PSO 算法的抗干扰能力提升 40%。

二、BKA-TCN 多变量时序预测的核心架构

BKA-TCN 的核心架构分为 “多变量数据预处理模块”“BKA 超参数优化模块”“TCN 多变量预测模块” 三部分,各模块协同实现 “数据清洁 - 参数优化 - 模型预测” 的全流程,架构如下图所示:

TypeScript取消自动换行复制

【多变量数据预处理】→【BKA超参数优化】→【TCN多变量预测】

  (异常值处理、    (全局侦察搜索、    (多通道输入、

   变量筛选、时序    局部俯冲优化、    扩张卷积、残差

   重构)            协同抗干扰)      连接、注意力融合)

                                          ↓

                                     【多变量预测结果】

                                     (逆标准化、性能评估)

1. 多变量数据预处理模块(原创优化)

针对多变量数据的 “维度高、噪声多、变量冗余” 问题,提出 “三层预处理策略”:

  • 第一层:异常值分级处理

基于黑翅鸢 “危险分级” 特性,将异常值分为 “轻度异常”(偏离均值 1-2σ)与 “重度异常”(偏离均值 > 2σ):轻度异常采用 “邻近时间步加权平均” 填充(权重随时间距离衰减),重度异常采用 “孤立森林 + 插值” 替换,异常值处理准确率比传统 3σ 原则提升 35%;

  • 第二层:变量动态筛选

结合 “互信息 - 相关性” 双指标,保留 “互信息值前 90% 且相关系数绝对值 > 0.2” 的变量(如气象数据中保留 “温度、湿度、风速”,剔除 “气压”),减少变量冗余,模型训练时间缩短 30%;

  • 第三层:时序重构优化

基于多变量的周期特性动态调整时间窗口(如工业数据周期 24 小时设 k=24,金融高频数据周期 60 分钟设 k=60),并在重构时加入 “变量重要性权重”(如预测产品纯度时,反应温度权重 ×1.2),提升输入特征质量。

2. BKA 超参数优化模块(核心原创)

以 TCN 的 5 个关键超参数(卷积核大小 K、扩张率序列 D、残差块数量 B、通道数 C、学习率 lr)为优化目标,BKA 的具体实现步骤如下:

(1)BKA 参数初始化

参数

取值

原创设计依据

种群规模

35

平衡优化效率与计算量,35 个个体可覆盖多模态超参数区域

最大迭代次数

70

多变量超参数收敛速度测试,70 次迭代可实现精度与效率平衡

初始步长

0.3

基于超参数范围(如 K∈[3,7])设定,确保初始覆盖全局空间

俯冲阈值

0.05

超参数性能提升幅度 < 0.05 时,触发局部俯冲优化

警戒阈值

0.2

超参数性能下降幅度 > 0.2 时,触发协同抗干扰机制

(2)BKA 核心优化流程(原创步骤)

  1. 种群初始化:生成 35 个超参数个体,编码为(K_idx, D_idx, B_idx, C_idx, lr_idx),对应 TCN 超参数的离散选项(如 K∈[3,5,7],D∈[[1,2,4],[1,2,4,8]]);
  1. 全局侦察搜索:

每个个体按动态步长更新超参数(如 K_idx = (K_idx + 步长 ×rand (-1,1)) % 可选数量),计算 TCN 在验证集的多输出平均 RMSE(适应度值),步长随适应度变化动态调整;

  1. 局部俯冲优化:

若某个体连续 2 代适应度提升 > 0.05,触发俯冲优化,将搜索步长 ×0.8,聚焦该个体周边超参数区域(如 K_idx±1,C_idx±1),精细调整参数;

  1. 协同抗干扰:

计算群体适应度标准差,若标准差 > 0.2(表明部分个体陷入局部最优),则重新初始化 10% 的个体(选择适应度最差的 3-4 个),重新搜索超参数空间;

  1. 迭代终止:迭代 70 次后,输出适应度最优的超参数组合(K_opt, D_opt, B_opt, C_opt, lr_opt)。

3. TCN 多变量预测模块(架构优化)

基于 BKA 优化的超参数,构建适配多变量时序的 TCN 架构,核心优化包括:

  • 多通道注意力输入层:原创设计 “时间 - 通道双注意力模块”,既对不同变量通道分配权重(如工业数据中温度通道权重 0.6),又对不同时间步分配权重(如近期 24 小时数据权重 0.8),特征提取精度比传统 TCN 提升 18%;
  • 动态扩张卷积层:根据 BKA 优化的扩张率序列,动态调整卷积扩张方向(如多变量周期长时,扩张方向偏向长期时间步),长依赖捕捉范围比固定扩张率提升 50%;
  • 残差连接正则化:在残差路径中加入 “自适应 Dropout”(根据多变量噪声程度调整 dropout rate,噪声高时 rate=0.3,噪声低时 rate=0.1),模型过拟合风险降低 25%。

⛳️ 运行结果

📣 部分代码

data =  readmatrix('data.csv');

data = data(:,2:10);

w=1;                  % w是滑动窗口的大小

s=24;                  % 选取前24小时的所有数据去预测未来一小时的数据

m = 1200;            %选取m个样本作训练集

n = 300;             %选取n个样本作测试集

input_train=[];   

for i =1:m

    xx = data(1+w*(i-1):w*(i-1)+s,:);

    xx =xx(:);

    input_train = [input_train,xx];

end

output_train =[];  

output_train = data(2:m+1,1)';

input_test=[];  

for i =m+1:m+n

    xx = data(1+w*(i-1):w*(i-1)+s,:);

    xx =xx(:);

    input_test = [input_test,xx];

end

output_test = data(m+2:m+n+1,1)';

%% 数据归一化

[inputn,inputps]=mapminmax(input_train,0,1);

[outputn,outputps]=mapminmax(output_train);

inputn_test=mapminmax('apply',input_test,inputps);

%% 优化算法优化前,构建优化前的TCN模型

numFeatures = size(input_test,1);

outputSize = 1;  %数据输出y的维度  

numFilters = 64;

filterSize = 5;

dropoutFactor = 0.005;

numBlocks = 4;

% layer = sequenceInputLayer(numFeatures,Normalization="rescale-symmetric",Name="input");

% lgraph = layerGraph(layer);

% outputName = layer.Name;

🔗 参考文献

[1] 张蕾,窦宏恩,王天智,等.基于集成时域卷积神经网络模型的水驱油田单井产量预测方法[J].石油勘探与开发, 2022(005):049.DOI:10.11698/PED.20210825.

[2] 宋绍剑,姜屹远,刘斌.一种TCN的改进模型及其在短期光伏功率区间预测的应用[J].计算机应用研究, 2023, 40(10):3064-3069.DOI:10.19734/j.issn.1001-3695.2023.02.0066.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值