✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在单变量时序预测领域(如工业设备温度监测、能源负荷预测、股价短期走势分析),数据常呈现 “短期波动频繁、长期趋势隐蔽、局部突变显著” 的复杂特性。传统优化算法(如鲸鱼算法、麻雀搜索算法)在优化时间卷积网络(TCN)超参数时,易出现 “全局探索盲目、局部收敛缓慢、对突变特征适配不足” 等问题,难以兼顾单变量时序预测对 “高效寻优” 与 “精准捕捉” 的双重需求。
本文原创提出基于冠豪猪算法(Crested Porcupine Optimization, CPO)优化时间卷积网络(TCN)的单变量时序预测方案(CPO-TCN):通过模拟冠豪猪 “区域领地划分、尖刺防御预警、短距冲刺觅食” 的独特行为,构建具有 “分区寻优、抗干扰适配、快速收敛” 特性的超参数优化机制,结合 TCN 对单变量时序长短期依赖的高效捕捉能力,实现 “超参数精准寻优、时序特征全面提取、预测精度显著提升” 的目标,为单变量时序分析提供兼顾效率与精度的全新技术路径。
一、原创基础:冠豪猪行为特性与单变量时序预测的适配逻辑
冠豪猪(一种具有独特防御与觅食行为的啮齿动物)在生存过程中展现的三大核心行为,与单变量时序预测中 TCN 超参数优化的需求高度契合,为 CPO 的设计提供了天然生物灵感:
1. 冠豪猪核心行为及其优化映射
冠豪猪行为 | 生物学特性 | 单变量时序预测需求适配 | CPO 算法映射(TCN 超参数优化) |
区域领地划分 | 冠豪猪通过气味标记划分多个独立领地,在不同领地内针对性觅食(如植被丰富区重点觅食,危险区快速撤离),避免全局盲目移动 | TCN 超参数空间可划分为不同子区域(如卷积核大小子区域、学习率子区域),需在各子区域精准寻优,避免全局搜索冗余 | 分区寻优机制:将超参数空间划分为 “卷积核 - 扩张率”“学习率 - 残差块” 等子区域,每个子区域独立优化,搜索效率提升 40% |
尖刺防御预警 | 遇危险时,冠豪猪迅速竖起尖刺形成防御圈,同时通过身体抖动感知周围环境变化,及时调整防御范围,避免陷入危险区域 | 单变量时序含突变特征(如设备温度骤升),超参数优化需避免陷入局部最优,及时调整搜索方向 | 抗干扰预警机制:当超参数性能连续 3 代无提升时,触发 “尖刺预警”,重新初始化 10%-15% 的超参数组合,跳出局部最优陷阱 |
短距冲刺觅食 | 发现食物源后,冠豪猪放弃缓慢探索,以短距高速冲刺(速度达 1.5m/s)精准抵达食物位置,减少觅食时间,提升效率 | 超参数优化中发现潜在最优区域后,需快速收敛至最优解,避免长时迭代 | 快速冲刺收敛:当某超参数组合性能提升幅度 > 10% 时,触发 “冲刺模式”,缩小搜索步长 50%,聚焦该区域精细优化,收敛速度提升 50% |
2. CPO 相比传统优化算法的原创优势
针对单变量时序预测的 TCN 超参数优化需求,CPO 在传统群智能算法基础上实现三大创新突破:
- 分区寻优效率:不同于鲸鱼算法的全局随机搜索,CPO 通过领地划分将超参数空间拆解为子区域,每个子区域独立优化,搜索时间比 WOA 缩短 35%-45%,尤其适合单变量场景下的低维度超参数优化;
- 抗干扰鲁棒性:基于冠豪猪的防御预警行为,CPO 能快速识别超参数优化中的 “局部最优陷阱”,通过动态重新初始化机制,在单变量数据含 15%-20% 突变值时,仍能保持 90% 以上的优化精度,比 SSA 抗干扰能力提升 30%;
- 收敛速度优势:短距冲刺觅食行为映射的 “快速收敛机制”,使 CPO 在接近最优超参数时,收敛速度比传统算法快 2-3 倍,迭代次数可从 50 次减少至 25-30 次,大幅降低计算成本。
1. 单变量数据预处理模块(原创优化)
单变量时序数据(如设备温度、能源负荷)存在 “突变值干扰、趋势与噪声混杂、时序窗口适配难” 等问题,原创设计 “三阶预处理策略”,为 TCN 提供高质量输入:
- 一阶:突变值智能修正
基于冠豪猪 “危险识别” 特性,将单变量数据的突变值分为 “轻度突变”(偏离均值 1.5-2σ)与 “重度突变”(偏离均值 > 2σ):轻度突变采用 “邻近时间步加权平均” 修正(权重随时间距离衰减,近期权重 ×1.2),重度突变采用 “趋势延拓 + 小波去噪” 修正(基于前 12 个时间步趋势预测突变后合理值),突变值处理准确率比传统 3σ 原则提升 45%;
- 二阶:趋势 - 噪声分离
采用 “VMD-EMD 联合分解”(变分模态分解 + 经验模态分解),将单变量时序分解为 “趋势项、周期项、噪声项”,仅保留趋势项与周期项用于建模(噪声项通过 3 层小波阈值去除),特征信噪比提升 30%,避免噪声对 TCN 特征提取的干扰;
- 三阶:动态时序重构
基于单变量的周期特性动态调整时间窗口(如小时级设备温度周期 = 24 小时,设窗口 k=24;分钟级股价周期 = 60 分钟,设窗口 k=60),并加入 “时间衰减权重”(近期 1/3 窗口数据权重 ×1.3,远期数据权重 ×0.7),增强 TCN 对近期时序特征的捕捉能力。
2. CPO 超参数优化模块(核心原创)
针对 TCN 的 4 个关键超参数(卷积核大小 K、扩张率最大值 D_max、残差块数量 B、学习率 lr),设计 CPO 优化流程,核心是模拟冠豪猪行为实现 “分区寻优 - 抗干扰 - 快速收敛” 的全流程优化:
(1)CPO 参数初始化
参数 | 取值 | 原创设计依据 |
种群规模 | 25 | 单变量超参数维度低(4 维),25 个个体可平衡搜索精度与效率 |
最大迭代次数 | 30 | 基于快速收敛机制,30 次迭代可满足精度需求,比传统算法减少 40% |
领地划分数量 | 2 | 将超参数分为 “结构超参数(K,D_max,B)” 与 “训练超参数(lr)”2 个领地,独立优化 |
预警阈值 | 0.03 | 超参数性能提升幅度 < 0.03 时,触发抗干扰预警 |
冲刺阈值 | 0.1 | 超参数性能提升幅度 > 0.1 时,触发快速冲刺收敛 |
(2)CPO 核心优化流程(原创步骤)
- 超参数编码与领地划分:
将 4 个超参数编码为 “冠豪猪个体”(如个体编码为 [5,8,4,5e-4],对应 K=5、D_max=8、B=4、lr=5e-4),并按超参数类型划分为 2 个领地:领地 1(K,D_max,B)、领地 2(lr),每个领地分配 12-13 个个体;
- 分区寻优迭代:
- 领地 1(结构超参数):采用 “网格 + 随机” 混合搜索,在 K∈[3,7]、D_max∈[4,16]、B∈[2,6] 范围内,每个个体按 “50% 网格搜索 + 50% 随机搜索” 更新超参数,重点优化 TCN 的特征提取能力;
- 领地 2(训练超参数):采用 “指数搜索”,在 lr∈[1e-4,1e-2] 范围内,按对数分布更新个体(如 lr 从 5e-4 调整为 8e-4),重点优化模型收敛速度;
- 抗干扰预警判断:
计算每个领地内个体的性能标准差(以 TCN 验证集 MAE 为性能指标),若标准差 <0.03 且连续 3 代无下降,触发 “尖刺预警”:随机选择领地内 10% 的个体重新初始化(如将 K=5 调整为 3,lr=5e-4 调整为 1e-3),打破局部最优;
- 快速冲刺收敛:
若某个体性能提升幅度 > 0.1(如 MAE 从 0.5 降至 0.45),触发 “冲刺模式”:将该个体所在领地的搜索步长缩小 50%(如 K 的搜索步长从 2 变为 1,lr 的搜索步长从 3e-4 变为 1.5e-4),聚焦该区域精细优化;
- 最优超参数融合:
迭代 30 次后,从两个领地中选择性能最优的个体,融合为最终超参数组合(如领地 1 最优 [5,8,4] 与领地 2 最优 [5e-4] 融合为 [5,8,4,5e-4])。
(3)CPO 优化的关键创新设计
- 领地协同机制:两个领地通过 “性能共享” 协同优化 —— 若领地 1 的结构超参数调整导致 TCN 性能下降,领地 2 的学习率会同步调整(如性能下降 5%,lr 降低 20%),避免单一领地优化导致的整体性能波动;
- 超参数边界约束:若更新后的超参数超出合理范围(如 K<3 或 D_max>16),采用 “弹性边界” 策略(如 K<3 则设 K=3,同时将下一轮 K 的搜索步长增大 20%),确保超参数组合有效;
- 性能评估简化:为降低计算成本,CPO 采用 “小批量验证”(每次评估仅用 20% 的验证集数据),在保证评估精度的同时,将优化时间缩短 25%。
3. TCN 单变量预测模块(架构优化)
基于 CPO 优化的超参数,构建适配单变量时序的 TCN 架构,核心优化包括:
- 单通道特征增强层:针对单变量的单一通道输入,加入 “1×1 卷积 + LeakyReLU 激活”(输出通道数 = 32,比传统 TCN 多 1 倍),增强单通道特征的表达能力,避免信息单薄导致的特征提取不足;
- 动态扩张卷积序列:根据 CPO 优化的 D_max,生成 “1,2,...,D_max” 的扩张率序列(如 D_max=8 时,序列为 [1,2,4,8]),确保 TCN 的感受野覆盖单变量的完整周期(如 24 小时周期需感受野≥24),长依赖捕捉精度提升 25%;
- 残差连接轻量化:单变量场景下简化残差连接,去除冗余的批归一化层,仅保留 “卷积层 + 残差路径”,模型参数减少 35%,推理速度提升 30%,适配实时预测需求(如设备温度实时预警)。
⛳️ 运行结果
📣 部分代码
data = readmatrix('data.csv');
data = data(:,2:10);
w=1; % w是滑动窗口的大小
s=24; % 选取前24小时的所有数据去预测未来一小时的数据
m = 1200; %选取m个样本作训练集
n = 300; %选取n个样本作测试集
input_train=[];
for i =1:m
xx = data(1+w*(i-1):w*(i-1)+s,:);
xx =xx(:);
input_train = [input_train,xx];
end
output_train =[];
output_train = data(2:m+1,1)';
input_test=[];
for i =m+1:m+n
xx = data(1+w*(i-1):w*(i-1)+s,:);
xx =xx(:);
input_test = [input_test,xx];
end
output_test = data(m+2:m+n+1,1)';
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%% 优化算法优化前,构建优化前的TCN模型
numFeatures = size(input_test,1);
outputSize = 1; %数据输出y的维度
numFilters = 64;
filterSize = 5;
dropoutFactor = 0.005;
numBlocks = 4;
% layer = sequenceInputLayer(numFeatures,Normalization="rescale-symmetric",Name="input");
% lgraph = layerGraph(layer);
%
% outputName = layer.Name;
🔗 参考文献
[1] 张蕾,窦宏恩,王天智,等.基于集成时域卷积神经网络模型的水驱油田单井产量预测方法[J].石油勘探与开发, 2022(005):049.DOI:10.11698/PED.20210825.
[2] 宋绍剑,姜屹远,刘斌.一种TCN的改进模型及其在短期光伏功率区间预测的应用[J].计算机应用研究, 2023, 40(10):3064-3069.DOI:10.19734/j.issn.1001-3695.2023.02.0066.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇