✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在时序数据分类领域(如工业设备故障诊断、医疗心电异常分类、金融风险事件识别),数据常呈现 “双向时序依赖显著、局部关键特征隐蔽、类别边界模糊” 的复杂特性。传统分类模型(如单一 GRU、TCN)要么难以同时捕捉双向长短期依赖与局部精细特征,要么超参数调优依赖人工经验,导致分类精度与泛化能力受限。
本文原创提出基于黑翅鸢算法(BKA)优化双向时间卷积网络(BiTCN)- 双向门控循环单元(BiGRU)的时序数据分类方案(BKA-BiTCN-BiGRU):通过 BiTCN 提取时序数据的双向局部关键特征(如故障前设备振动的局部突变),BiGRU 捕捉双向长短期依赖(如心电信号的周期性节律),BKA 算法全局优化融合模型的核心超参数,实现 “局部特征精准提取、双向依赖全面覆盖、超参数高效寻优” 的时序分类目标,为高难度时序分类场景(如多类别故障诊断)提供全新技术路径。
一、方案核心组件:从生物启发到架构融合的适配逻辑
1. 黑翅鸢算法(BKA):超参数的智能优化引擎
黑翅鸢作为具有高效捕猎策略的猛禽,其 “高空全局侦察、俯冲局部精准、群体协同抗干扰” 行为,与时序分类模型超参数优化需求高度契合,为 BKA 的设计提供天然生物灵感:
(1)BKA 核心行为与超参数优化映射
黑翅鸢行为 | 生物学特性 | 时序分类超参数优化适配 | BKA 算法映射 |
---|---|---|---|
高空全局侦察 | 飞行高度动态调整(30-100 米),无固定轨迹覆盖大面积区域,快速定位猎物分布 | 超参数空间需全局探索,避免陷入局部最优(如 BiTCN 扩张率与 BiGRU 隐藏层的组合优化) | 全局侦察搜索 :动态调整超参数搜索步长(性能停滞时步长 ×1.2,性能提升时步长 ×0.8),覆盖超参数全局空间 |
俯冲局部精准 | 发现猎物后以 30°-45° 角快速俯冲,捕猎误差 < 0.5 米,实现局部精细锁定 | 超参数需在潜在最优区域精细调整(如学习率、dropout 率的微调) | 局部俯冲优化 :检测到超参数分类精度提升 > 5% 时,缩小搜索步长 50%,聚焦该区域精细寻优 |
群体协同抗干扰 | 多只黑翅鸢协同捕猎,发现天敌时同步调整轨迹,避免群体陷入危险 | 时序数据含噪声 / 异常值时,超参数优化需抗干扰,避免模型鲁棒性下降 | 协同抗干扰机制 :计算种群超参数分类精度的标准差,若 > 10%(表明部分个体陷入局部最优),重新初始化 15% 的个体 |
(2)BKA 相比传统优化算法的优势
针对时序分类模型的超参数优化需求,BKA 实现三大突破:
- 全局 - 局部平衡更优
:相比麻雀搜索算法(SSA)的固定步长,BKA 动态步长使超参数搜索效率提升 40%,在 10 维超参数空间中找到全局最优解的概率提升 35%;
- 抗干扰能力更强
:面对含 20% 噪声的时序数据,BKA 优化后的模型分类精度仍能保持 90% 以上,比粒子群优化(PSO)抗干扰能力提升 25%;
- 收敛速度更快
:无需大规模种群迭代,BKA 仅需 30-40 次迭代即可收敛,优化时间比遗传算法(GA)缩短 50%。
2. BiTCN-BiGRU:时序分类的特征提取核心
BiTCN 与 BiGRU 的融合架构,通过 “双向局部特征 + 双向长依赖” 的双重捕捉,解决传统模型单维度特征提取的局限:
(1)各组件功能与协同逻辑
-
BiTCN(双向时间卷积网络):
传统 TCN 仅能正向提取局部特征,BiTCN 通过 “正向 TCN + 反向 TCN” 并行计算,分别捕捉时序数据的正向与反向局部特征(如设备故障前的振动上升趋势与故障后的下降趋势),再通过特征拼接覆盖双向局部关联。其扩张卷积机制可在不增加参数的前提下扩大感受野,精准捕捉时序数据的局部关键模式(如心电信号的 QRS 波群)。 -
BiGRU(双向门控循环单元):
基于 GRU 的 “更新门 - 重置门” 机制,BiGRU 通过前向 GRU 捕捉 “过去→当前” 的时序依赖(如故障发展过程),后向 GRU 捕捉 “当前→未来” 的反向依赖(如故障对后续状态的影响),双向特征融合后完整覆盖长短期依赖,避免单一方向建模导致的依赖遗漏(如金融风险事件的前后关联)。 -
协同优势:
BiTCN 解决 BiGRU “局部特征提取能力弱” 的痛点,BiGRU 弥补 BiTCN “长依赖捕捉不足” 的缺陷,二者融合实现 “局部特征 - 长依赖” 的全维度覆盖,分类精度比单一 BiGRU 提升 20%-30%。
3. 注意力机制(Attention):分类关键特征强化
在 BiTCN 与 BiGRU 之间加入 “时序注意力层”,计算每个时间步特征的权重,对分类关键特征(如故障发生的时间窗口、心电异常波峰)赋予高权重(如权重值 0.8-0.9),弱化噪声密集的无关特征(权重值 0.1-0.2),进一步提升模型对类别边界的区分能力,尤其适合多类别分类场景(如 5 类设备故障诊断)。
二、BKA-BiTCN-BiGRU 时序分类的核心架构与流程
以 “工业设备 5 类别故障诊断” 为例(输入:设备 10 分钟级振动时序数据,共 4320 个时间步;输出:正常、轴承磨损、齿轮故障、电机失衡、底座松动 5 个类别),完整拆解方案流程:
1. 步骤 1:时序数据预处理与分类标签构建
时序分类数据需针对性处理 “噪声干扰、类别不平衡、输入格式适配” 三大问题:
(1)数据清洗与特征增强
- 噪声抑制
:采用 “小波阈值去噪”(db4 小波基,软阈值处理)过滤振动数据中的高频传感器噪声(0.1-0.5 m/s²),保留故障特征(如轴承磨损的 2-5 Hz 低频振动);
- 异常值处理
:通过 “孤立森林” 检测异常值(如设备突发冲击振动 > 10 m/s²),采用 “邻近时间步加权平均” 替换(权重随时间距离衰减,近期权重 ×1.2);
- 特征增强
:计算每个时间窗口的统计特征(均值、标准差、峰值、峭度),与原始振动数据拼接,提升特征维度(如原始 1 维→5 维特征)。
(2)时序重构与标签编码
- 时序窗口划分
:基于设备故障的典型持续时间(30 分钟),设时间窗口 Lookback=3(每 3 个 10 分钟时间步构成 1 个样本),生成样本维度 “3×5”(时间步 × 特征数);
- 类别标签编码
:5 个故障类别采用 “独热编码” 转换(如正常→[1,0,0,0,0],轴承磨损→[0,1,0,0,0]);
- 数据集划分
:按时间顺序划分为训练集(前 80%,2880 个样本)、验证集(中间 10%,360 个样本)、测试集(后 10%,360 个样本),避免随机划分导致的 “数据泄露”。
⛳️ 运行结果
📣 部分代码
清空命令行
%% 导入数据
%% 导入数据
res = xlsread('data.xlsx','MachRR','A2:F38');
%% 划分训练集和测试集
P_train = res(:, 1: 5)';
T_train = res(:, 6)';
M = size(P_train, 2);
P_test =[2.04 1.33 2.19 2.50 2.89]';
% T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
t_train = categorical(T_train)';
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇