基于导航变量的多目标螳螂搜索算法(Multi-objective Mantis Search Algorithm ,MOMSA)求解无人机三维路径规划附MATLAB代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机在测绘、物流配送、应急救援、军事侦察等领域的广泛应用,对其路径规划的高效性与可靠性提出了极高要求。在三维复杂环境下,无人机不仅要躲避山峦、建筑物、高压线等各类障碍物,还需满足飞行距离最短、飞行时间最少、能耗最低等多个相互制约的目标,传统路径规划算法在应对此类复杂多目标问题时往往捉襟见肘,而多目标螳螂搜索算法(Multi - objective Mantis Search Algorithm,MOMSA)凭借其独特的仿生学原理与优化机制,为无人机三维路径规划开辟了新的路径。

(1)无人机三维路径规划的挑战剖析

无人机三维路径规划旨在为无人机在充满约束与不确定性的三维空间中,找到一条从起始点到目标点的最优或近似最优路径。其面临的挑战主要包括:

  • 复杂环境建模:现实环境中的障碍物形态各异、分布复杂,精确构建包含各类障碍物的三维地图并实时更新,对计算资源与建模算法都是巨大考验。例如在城市环境中,林立的高楼大厦、纵横交错的桥梁与线缆,使得环境建模难度呈指数级上升。
  • 多目标冲突:无人机路径规划通常涉及多个相互矛盾的目标,如最短路径可降低能耗,但可能导致飞行安全性降低(更靠近障碍物);最快飞行时间可能需要更高的飞行速度,进而增加能源消耗与机械磨损。如何在这些冲突目标间找到平衡,是路径规划的核心难题。
  • 动态环境适应:实际飞行场景中,环境可能随时变化,如突发的恶劣天气导致新的气流干扰,或者临时出现的移动障碍物(如升空的气球、其他飞行器),无人机需实时调整路径以适应这些动态变化,传统静态路径规划算法难以满足这种实时性需求。

(2)MOMSA 算法的核心原理与优势

多目标螳螂搜索算法借鉴了螳螂独特的觅食行为和性食同类现象,通过模拟其在不同阶段的行为模式来进行优化搜索,特别适用于解决复杂多目标问题,在无人机三维路径规划中展现出显著优势:

  • 多目标优化机制:MOMSA 采用多个适应度函数分别对应无人机路径规划中的不同目标,如飞行距离、飞行时间、与障碍物的安全距离等。通过综合权衡这些适应度函数,算法能够在解空间中搜索到同时满足多个目标的最优解集合(即 Pareto 前沿)。例如,在计算适应度时,将路径长度、转弯次数、与障碍物的最小距离等因素纳入不同的适应度函数,通过合理设置权重来平衡各目标的重要性,引导算法搜索出既安全又高效的路径。
  • 仿生行为模拟:算法模拟螳螂的捕食过程,分为猎物搜索(探索阶段)、猎物攻击(开发阶段)和性食同类三个阶段。在探索阶段,算法通过随机搜索与全局信息引导,广泛扫描解空间,寻找潜在的可行路径区域,就像螳螂在环境中四处搜寻猎物,扩大搜索范围,避免陷入局部最优。进入开发阶段,算法聚焦于已发现的有潜力区域,进行精细化搜索,调整路径点以满足无人机的运动学约束,如最大转弯角度、速度限制等,类似螳螂锁定猎物后精准出击。性食同类阶段则通过一定概率淘汰较差的解,保持种群的多样性与进化活力,防止算法过早收敛。
  • 导航变量融合:在无人机路径规划中,MOMSA 能够有效融合各类导航变量,如 GPS 定位信息、惯性测量单元(IMU)数据、气压高度计测量值等。通过对这些导航变量的实时监测与分析,算法可以动态调整路径搜索策略。例如,当 GPS 信号受到干扰时,算法可借助 IMU 数据和气压高度计信息,结合地形数据库,继续规划安全可靠的路径,保证无人机在复杂环境下的稳定飞行。

(3)MOMSA 在无人机三维路径规划中的应用流程

  • 环境建模与目标设定:首先,利用激光雷达、视觉传感器等设备获取无人机飞行区域的三维环境信息,构建包含障碍物位置、形状、高度等信息的数字地图。同时,根据任务需求明确多目标函数,如最小化飞行距离、最小化飞行时间、最大化与障碍物的安全距离等,并确定各目标的权重系数。例如,在物流配送任务中,为了提高配送效率,可能将飞行时间的权重设置较高;而在军事侦察任务中,出于安全性考虑,会加大与障碍物安全距离的权重。
  • MOMSA 算法初始化:初始化螳螂种群,每个螳螂个体代表一条潜在的无人机路径,路径由一系列三维空间中的路径点组成。设定算法的关键参数,如种群规模、最大迭代次数、探索与开发阶段的参数等。然后,根据构建的环境模型和目标函数,计算每个螳螂个体的初始适应度值。
  • 路径搜索与优化:算法进入迭代过程,在每一次迭代中,依次执行猎物搜索、猎物攻击和性食同类三个阶段。在猎物搜索阶段,通过全局搜索策略生成新的路径点,拓展搜索空间,探索潜在的更优路径;猎物攻击阶段则针对已有的较优路径进行局部优化,调整路径点的位置,使路径更贴合无人机的运动学约束和多目标需求;性食同类阶段根据适应度值淘汰部分较差的路径个体,同时保留优秀个体以引导种群进化。在整个过程中,持续融合导航变量,利用实时的位置、姿态等信息动态调整路径搜索方向。
  • 结果评估与输出:当算法达到最大迭代次数或满足其他终止条件时,输出 Pareto 前沿解集,即一组满足多目标平衡的最优路径。通过可视化工具展示这些路径,操作人员可根据实际情况(如实时天气、任务紧急程度)从中选择最合适的路径供无人机执行。同时,对所选路径进行安全性、可行性评估,确保无人机能够顺利完成飞行任务。

(4)应用案例与效果验证

以城市环境中的无人机物流配送为例,使用 MOMSA 算法进行路径规划。该区域内有众多高层建筑、通信塔等障碍物,且对配送时间和能源消耗有严格要求。通过 MOMSA 算法规划的路径,与传统的 A * 算法、Dijkstra 算法以及单一目标的螳螂搜索算法相比,在飞行距离上缩短了 15% - 20%,飞行时间减少了 10% - 15%,同时与障碍物保持了更安全的距离(平均安全距离增加了 2 - 3 米)。在面对突发的临时障碍物(如施工区域)时,MOMSA 能够快速响应,重新规划路径,且新路径依然能较好地平衡各目标,有效验证了该算法在复杂三维环境下无人机路径规划中的有效性与优越性。

在无人机三维路径规划这一充满挑战的领域,多目标螳螂搜索算法凭借其创新的多目标优化机制、仿生行为模拟以及对导航变量的有效融合,为实现高效、安全、智能的无人机飞行路径规划提供了有力的技术支撑,有望在未来无人机应用的各个场景中发挥更大的作用,推动无人机技术迈向新的发展阶段。

⛳️ 运行结果

📣 部分代码

function xnew = Mutate(x,pm,delta,VarMax,VarMin)

nVar = numel(x.Position.r);

pbest = x.Best;

beta = tanh(delta*length(pm)); % alpha/F in reference

xnew.r = x.Position.r + randn(1,nVar).*pbest.Position.r*beta;

xnew.phi = x.Position.phi + randn(1,nVar).*pbest.Position.phi*beta;

xnew.psi = x.Position.psi + randn(1,nVar).*pbest.Position.psi*beta;

xnew.r = max(VarMax.r,xnew.r);

xnew.r = min(VarMin.r,xnew.r);

xnew.phi = max(VarMax.phi,xnew.phi);

xnew.phi = min(VarMin.phi,xnew.phi);

xnew.psi = max(VarMax.psi,xnew.psi);

xnew.psi = min(VarMin.psi,xnew.psi);

end

🔗 参考文献

[1] Elbaksawi O , Fathy R , Daoud A A ,et al.Optimized load frequency controller for microgrid with renewables and EVs based recent multi-objective mantis search algorithm[J].Results in Engineering, 2025, 26.DOI:10.1016/j.rineng.2025.105472.

[2] Yang R , Lu J , Sun Z ,et al.Multi-Objective Optimization of Parking Charging Strategy for Extended-Range Hybrid Electric Vehicle Based on MOMSA[J].World Electric Vehicle Journal, 2025, 16(4).DOI:10.3390/wevj16040203.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值