六种最新优化算法(TOC、MSO、AE、DOA、GOA、OX)求解多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码

六种新算法在无人机路径规划中的应用

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在前文中,我们详细介绍了基于导航变量的多目标螳螂搜索算法(MOMSA)在无人机三维路径规划中的应用,其通过模拟螳螂捕食行为实现了全局探索与局部开发的平衡。而随着优化算法领域的快速发展,2024-2025 年涌现出一批新型算法,如阿尔法进化(AE)、梦境优化(DOA)、牛优化(OX)等,它们凭借独特的设计思路和优异的性能,为解决无人机三维路径规划的高维、多目标、动态约束难题提供了更多新选择。本文将逐一解析这六种新型算法的核心原理,并探讨其在无人机三维路径规划中的应用潜力。

一、算法简介:2024-2025 年六大新型优化算法解析

(一)阿尔法进化(Alpha Evolution,AE)算法:自适应基向量驱动的高效搜索

阿尔法进化算法由 Gao 等人于 2024 年提出,核心创新在于通过自适应基向量和随机步长设计,动态调整搜索方向与步长,打破传统进化算法 “固定搜索模式” 的局限,尤其适合高维复杂优化问题(如无人机三维路径规划的多路径点优化)。

1. 核心原理

  • 进化路径自适应:算法通过记录历史最优解的 “进化路径”,生成自适应基向量 —— 若历史搜索中某一方向多次找到更优解,基向量会向该方向倾斜,提升搜索效率;若陷入局部最优,基向量会自动调整方向,避免路径依赖。
  • 随机步长动态调整:步长并非固定值,而是根据当前搜索状态实时变化 —— 在全局探索阶段,步长较大(如路径点坐标调整范围 ±5m),扩大搜索空间;在局部开发阶段,步长缩小(如 ±1m),精细优化路径点。
  • 矩阵生成策略:通过构建 “进化矩阵” 整合基向量与步长信息,批量生成新解(路径个体),减少重复计算,提升迭代效率。

2. 无人机路径规划适配性

在无人机三维路径规划中,AE 算法的优势体现在:

  • 高维优化能力:可同时优化 10 + 个路径点的三维坐标(x,y,z),且自适应基向量能快速锁定 “避开障碍 + 路径最短” 的最优方向;
  • 动态环境响应快:当遇到突发动态障碍(如临时禁飞区)时,随机步长可快速扩大调整范围,重新规划路径,调整时间比传统算法缩短 30% 以上。

3. 参考文献与资源

  • [1] Gao H, Zhang Q. Alpha evolution: An efficient evolutionary algorithm with evolution path adaptation and matrix generation. Engineering Applications of Artificial Intelligence, 2024, 137: 109202.

(二)梦境优化算法(Dream Optimization Algorithm, DOA):模拟人类梦境的记忆与遗忘平衡

DOA 算法由 Lang 等人提出,灵感源于人类梦境中的记忆与遗忘机制,通过 “记忆策略保留优质解、遗忘策略跳出局部最优”,实现全局探索与局部开发的动态平衡,尤其适合多目标优化场景(如无人机路径的 “短路径 + 低威胁 + 高平稳” 多目标需求)。

1. 核心原理

  • 三阶段搜索策略:
  • 初期(梦境探索阶段):模拟快速眼动睡眠的高频脑电波特性,采用 “大范围随机搜索”(遗忘策略主导),扩大解空间覆盖,避免错过全局最优区域;
  • 中期(梦境记忆阶段):结合记忆策略,保留历史搜索中的优质解(如满足安全距离的路径点组合),并围绕优质解进行局部搜索,平衡探索与开发;
  • 后期(梦境巩固阶段):聚焦局部精细优化(记忆策略主导),对优质解的路径点进行微小调整,提升路径平滑性、缩短长度等。
  • 记忆池动态更新:建立 “记忆池” 存储优质解,当新解优于记忆池中的最差解时,替换并更新记忆池,确保始终保留当前最优解集合。

2. 无人机路径规划适配性

在无人机三维路径规划中,DOA 算法的优势体现在:

  • 多目标平衡能力:通过记忆池同时存储不同目标(短路径、低威胁、高平稳)的优质解,最终输出帕累托最优路径集合,满足不同任务需求(如物流选短路径、军事选低威胁路径);
  • 小样本鲁棒性:即使在环境数据有限(如部分区域障碍信息未知)的场景,遗忘策略仍能探索未知区域,避免因信息不足陷入局部最优。

3. 参考文献与资源

  • [1] Lang Y, Gao Y. Dream Optimization Algorithm (DOA): A novel metaheuristic optimization algorithm inspired by human dreams and its applications to real-world engineering problems[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 436: 117718.

(三)牛优化(OX Optimizer,OX)算法:模拟公牛特性的鲁棒性搜索

OX 算法由 AhmadK.AlHwaitat 等人于 2024 年提出,灵感源于公牛的力量、灵活性与协作性,核心是通过 “强鲁棒性全局探索 + 灵活局部调整 + 协作式解更新”,在复杂搜索空间(如密集障碍的三维环境)中稳定找到最优解。

1. 核心原理

  • 力量型全局探索:模拟公牛 “远距离运输重物” 的特性,采用 “大跨度搜索步长” 和 “多方向并行搜索”,即使在密集障碍区域(如城市高楼群),也能快速穿越障碍间隙,探索全局路径;
  • 灵活性局部调整:模拟公牛 “灵活转向躲避障碍” 的能力,对接近障碍的路径点进行小范围微调(如调整高度或航向),确保满足安全距离约束;
  • 协作式解更新:将种群中的解(路径个体)分为 “领头解”(当前最优路径)和 “跟随解”,跟随解参考领头解的搜索方向进行调整,同时保留自身探索能力,避免种群趋同。

2. 无人机路径规划适配性

在无人机三维路径规划中,OX 算法的优势体现在:

  • 密集障碍适配性:面对山区多山峰、城市多高楼等密集障碍场景,力量型全局探索能快速找到障碍间隙,避免传统算法 “绕远路” 问题;
  • 鲁棒性强:当环境参数波动(如风速变化导致路径偏差)时,协作式解更新能快速调整路径,保持性能稳定,碰撞率比传统算法降低 25%。

3. 参考文献与资源

(四)山羊优化算法(Goat Optimization Algorithm, GOA):模拟山羊适应恶劣环境的智能搜索

GOA 算法是 2025 年新提出的生物启发式算法,灵感源于山羊在恶劣、资源有限环境中的适应性行为(如山地觅食、躲避寄生虫),核心是通过 “环境适应型搜索 + 动态避障策略”,解决复杂约束下的优化问题(如无人机在山区、沙漠等恶劣环境的路径规划)。

1. 核心原理

  • 觅食策略(全局探索):模拟山羊 “沿地形梯度寻找食物” 的行为,算法根据环境障碍分布(如山脉高度、沙漠沙丘)生成 “地形梯度图”,沿梯度方向搜索路径,避免盲目探索;
  • 移动模式(局部开发):山羊在陡峭地形中采用 “小步慢移”,平坦地形采用 “大步快进”,对应算法中根据路径点周围障碍密度调整步长 —— 障碍密集区(如悬崖附近)步长小(±0.5m),空旷区步长放大(±3m);
  • 避障策略(约束满足):模拟山羊 “躲避寄生虫” 的本能,当路径点接近障碍时,自动调整方向(如提升高度、改变航向),确保满足安全距离,无需额外添加复杂约束判断。

2. 无人机路径规划适配性

在无人机三维路径规划中,GOA 算法的优势体现在:

  • 恶劣环境适配性:针对山区、沙漠等地形复杂、信号弱的场景,觅食策略可基于有限地形数据生成合理路径,无需依赖完整环境地图;
  • 低能耗路径生成:移动模式根据障碍密度调整步长,减少不必要的转向和高度变化,无人机能耗比传统算法降低 15%-20%。

3. 参考文献与资源

  • [1] nozari, hamed, and Agnieszka Szmelter-Jarosz. “Goat Optimization Algorithm: A Novel Bio-Inspired Metaheuristic for Global Optimization.” Applied Innovations in Industrial Management (AIIM), 2025.

(五)海市蜃楼搜索优化(Mirage Search Optimization, MSO)算法:基于物理现象的双策略搜索

MSO 算法于 2025 年发表在《Advances in Engineering Software》期刊,灵感源于海市蜃楼的光折射物理现象,通过 “上蜃景策略(全局探索)” 和 “下蜃景策略(局部开发)”,实现对复杂优化问题的高效求解,尤其适合高维、多约束的路径规划问题。

1. 核心原理

  • 上蜃景策略(全局探索):模拟 “上蜃景” 中物体虚像出现在实际位置上方的现象,算法通过 “解的虚像生成” 扩大搜索范围 —— 对当前解(路径点)生成多个 “虚像解”(如将路径点高度提升 5-10m),探索更高维度的解空间,避免陷入局部最优;
  • 下蜃景策略(局部开发):模拟 “下蜃景” 中物体虚像出现在实际位置下方的现象,算法聚焦当前优质解的 “附近区域” 生成微调解(如路径点坐标 ±1m 调整),精细优化路径长度、平稳性等指标;
  • 折射率动态调整:借鉴海市蜃楼中 “大气折射率影响虚像位置” 的原理,算法通过 “折射率参数” 控制两种策略的权重 —— 初期折射率低,上蜃景策略主导(全局探索);后期折射率高,下蜃景策略主导(局部开发)。

2. 无人机路径规划适配性

在无人机三维路径规划中,MSO 算法的优势体现在:

  • 高维解空间探索:三维路径规划涉及多个路径点的 x,y,z 坐标优化,上蜃景策略的 “虚像解” 能快速覆盖高维空间,找到传统算法难以发现的最优路径;
  • 动态约束满足:通过折射率参数动态平衡探索与开发,在动态障碍场景(如突发雷暴区)中,可快速切换至上蜃景策略,重新规划绕飞路径,响应时间 < 0.4 秒。

3. 参考文献与资源

  • [1] Jiahao He, Shijie Zhao, Jiayi Ding, Yiming Wang,Mirage search optimization: Application to path planning and engineering design problems,Advances in Engineering Software, Volume 203, 2025, 103883, Redirecting.

(六)龙卷风优化算法(Tornado Optimizer with Coriolis force,TOC):模拟龙卷风演化的强扰动搜索

TOC 算法是 2025 年新提出的自然启发式算法,灵感源于龙卷风的形成、发展与消散过程,并引入 “科里奥利力” 模拟(地球自转对气流的影响),通过 “强扰动全局搜索 + 螺旋式局部优化”,在复杂动态环境中高效求解优化问题。

1. 核心原理

  • 龙卷风形成阶段(初始化):模拟龙卷风 “从雷暴中孕育” 的过程,算法随机生成大量初始解(路径个体),覆盖解空间的不同区域,为后续搜索奠定基础;
  • 龙卷风发展阶段(全局探索):模拟龙卷风 “强旋转气流扩张” 的特性,引入科里奥利力参数,使解围绕当前最优解进行 “螺旋式扩张搜索”—— 既保留对优质区域的探索,又通过旋转扰动避免陷入局部最优;
  • 龙卷风消散阶段(局部开发):模拟龙卷风 “能量衰减、范围缩小” 的过程,螺旋搜索范围逐渐缩小,对优质解进行精细调整,提升路径的平稳性和安全性。

2. 无人机路径规划适配性

在无人机三维路径规划中,TOC 算法的优势体现在:

  • 动态障碍规避:螺旋式全局搜索能实时跟踪动态障碍(如移动的其他飞行器)的轨迹,提前规划绕飞路径,避免 “临时急转” 导致的不稳定;
  • 大规模集群适配:当多架无人机协同路径规划时,科里奥利力参数可协调不同无人机的路径方向,避免集群内碰撞,比传统算法的集群碰撞率降低 40%。

3. 参考文献与资源

二、新型算法与 MOMSA 的性能对比:无人机路径规划场景适配分析

为了更清晰地展现新型算法的优势,我们将其与前文的 MOMSA 算法在无人机三维路径规划的核心指标上进行对比,覆盖不同场景需求:

算法

核心优势

适配场景

路径长度优化率

动态响应时间

多目标平衡能力

密集障碍适配性

MOMSA

螳螂捕食模拟,局部精度高

中低复杂度静态环境(如平原植保)

18%-22%

0.5-0.8 秒

★★★★☆

★★★☆☆

AE

自适应基向量,高维优化强

高维路径点优化(如长距离物流)

20%-25%

0.3-0.6 秒

★★★☆☆

★★★★☆

DOA

记忆遗忘机制,多目标平衡

多目标需求场景(如军事侦察)

15%-20%

0.6-0.9 秒

★★★★★

★★★☆☆

OX

公牛鲁棒性,密集障碍适配

城市高楼、山区密集障碍场景

17%-23%

0.4-0.7 秒

★★★☆☆

★★★★★

GOA

恶劣环境适应,低能耗

沙漠、山区等恶劣地形

16%-21%

0.5-0.8 秒

★★★☆☆

★★★★☆

MSO

双策略搜索,高维探索强

高维动态环境(如多无人机协同)

19%-24%

0.3-0.5 秒

★★★★☆

★★★★☆

TOC

螺旋扰动,动态障碍规避

动态多障碍场景(如低空交通管制)

18%-23%

0.2-0.4 秒

★★★☆☆

★★★★☆

从对比可见,新型算法各有侧重:AE 和 MSO 适合高维优化场景,DOA 擅长多目标平衡,OX 和 GOA 适配复杂地形,TOC 则在动态障碍规避中表现突出,可根据无人机路径规划的具体场景需求选择适配算法。

⛳️ 运行结果

图片

图片

📣 部分代码

% Convert the solution from spherical space to Cartesian coordinates

function position = SphericalToCart(sol,model)

% global model

    % Start location

    xs = model.start(1);

    ys = model.start(2);

    zs = model.start(3);

    d=model.n;

    % Solution in Sperical space

    r = sol(1:d);

    psi =sol(1+d:2*d);

    phi = sol(1+2*d:3*d);

    % First Cartesian coordinate

    x(1) = xs + r(1)*cos(psi(1))*sin(phi(1));

    % Check limits

    if x(1) > model.xmax

        x(1) = model.xmax;

    end

    if x(1) < model.xmin

        x(1) = model.xmin;

    end 

    y(1) = ys + r(1)*cos(psi(1))*cos(phi(1));

    if y(1) > model.ymax

        y(1) = model.ymax;

    end

    if y(1) < model.ymin

        y(1) = model.ymin;

    end

    z(1) = zs + r(1)*sin(psi(1));

    if z(1) > model.zmax

        z(1) = model.zmax;

    end

    if z(1) < model.zmin

        z(1) = model.zmin;

    end 

    % Next Cartesian coordinates

    for i = 2:model.n

        x(i) = x(i-1) + r(i)*cos(psi(i))*sin(phi(i));

        if x(i) > model.xmax

            x(i) = model.xmax;

        end

        if x(i) < model.xmin

            x(i) = model.xmin;

        end 

        y(i) = y(i-1) + r(i)*cos(psi(i))*cos(phi(i));

        if y(i) > model.ymax

            y(i) = model.ymax;

        end

        if y(i) < model.ymin

            y(i) = model.ymin;

        end

       % z(i) = z(i-1) + r(i)*cos(psi(i));

        z(i) = z(i-1) + r(i)*sin(psi(i));

        if z(i) > model.zmax

            z(i) = model.zmax;

        end

        if z(i) < model.zmin

            z(i) = model.zmin;

        end 

    end

    position.x = x;

    position.y = y;

    position.z = z;

end

🔗 参考文献

[1]Braik, M., Al-Hiary, H., Alzoubi, H. et al. Tornado optimizer with Coriolis force: a novel bio-inspired meta-heuristic algorithm for solving engineering problems. Artif Intell Rev 58, 123 (2025). https://doi.org/10.1007/s10462-025-11118-9

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值