基于Stacking(2基学习器)集成学习算法的数据回归预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在金融趋势预测、工业参数预测、能源负荷预估等领域,单一回归模型常受限于 “对复杂数据分布拟合不足”“泛化能力弱”“易受异常值干扰” 等问题。而 Stacking 集成学习通过 “多模型协同建模 + 元学习器整合” 的双层架构,能有效融合不同模型的优势,显著提升回归预测精度。本文聚焦 “2 个基学习器” 的 Stacking 集成方案,从原理解析、模型选型、流程落地到性能验证,完整呈现其在数据回归预测中的应用。

一、Stacking 集成学习核心原理:2 基学习器的协同逻辑

Stacking(堆叠集成)的核心思想是 “分阶段建模”,通过第一层的基学习器捕捉数据不同维度特征,再通过第二层的元学习器对基学习器输出进行整合优化。当采用 2 个基学习器时,需重点解决 “基学习器互补性选型” 与 “元学习器适配性设计” 两大关键问题,确保集成效果优于单一模型。

(一)Stacking 双层架构解析(2 基学习器场景)

Stacking 的双层架构在 2 基学习器场景下简洁高效,具体结构如下:

⛳️ 运行结果

📣 部分代码

%%  读取数据

res = xlsread('数据集.xlsx');

%%  分析数据

num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)

num_dim = size(res, 2) - 1;               % 特征维度

num_res = size(res, 1);                   % 样本数(每一行,是一个样本)

num_size = 0.9;                           % 训练集占数据集的比例

res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据

P_train = []; P_test = [];

T_train = []; T_test = [];

🔗 参考文献

[1]张郁,黄石成,苑波,等.基于SWLSTM-Stacking集成学习的源荷区间预测方法[J].电网与清洁能源, 2024, 40(6):97-106.DOI:10.3969/j.issn.1674-3814.2024.06.012.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

常规的单载波调制技术在带宽有限的测井电缆上的低传输速率制约着成像测井技术的发展。在分析测井 电缆传输特性和 OFDM 技术原理的基础上 ,设计了一种基于 OFDM 技术的测井电缆高速数据传输系统 ,并介绍了 基于 OFDM 技术的测井电缆高速数据传输系统的参数设计和工作原理 ,给出了不同长度测井电缆上的测试结果。 电缆实测结果表明 ,在 7 000 m长的测井电缆上 ,基于OFDM 技术的测井电缆高速数据传输系统可获得900 kbit / s 以上的数据传输速率和低于 5E28 的误码率。当变压器的接入模式为 Mode2II时 ,系统最高的数据传输速率可达到 1. 1 Mbit/ s。 (To solve t he low data t ransmission rate problem in t he conventional single car rier mod2 ulation met hod for logging cable and enhance t he data t ransmission rate , a new data t ransmission system with high data t ransmission rate for logging cable is propo sed , which is based on t he Or2 t hogonal Frequency Division Multiplexing (OFDM) technology. The working principle of OFDM modem and t he procedure of data t ransmission system are al so presented and lot s of test s are car2 ried out on logging cables with different lengt hs. It is verified that t he data t ransmission rate can reach 900 kbit/s on 7 000 meter s logging cable wit h bit er ror rate (BER) lower t han 5E28 , and t he maximum data t ransmission rate is 1. 1 Mbit/s under Mode2II of t he t ransformer .)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值