【消融实验】基于DBO-CNN-GRU-Attention 6 模型多变量时序预测一键对比(多输出单输出)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在多变量时序预测领域(如多站点气象预测、多设备能耗预测),DBO-CNN-GRU-Attention 6 模型通过 “深度信念优化(DBO)+ 卷积特征提取(CNN)+ 时序建模(GRU)+ 注意力机制(Attention)” 的融合架构,实现对复杂时序依赖与关键特征的精准捕捉。然而,各模块对模型性能的贡献度、多输出与单输出场景下的模块适配性尚未明确。本文通过消融实验,逐一验证 DBO 优化、CNN、GRU、Attention 模块的核心作用,设计 “一键对比” 框架,在多输出(如未来 3 步温度 + 湿度预测)与单输出(如未来 1 步电力负荷预测)场景下,量化分析各消融模型的性能差异,为模型架构优化与场景化选型提供科学依据。

一、DBO-CNN-GRU-Attention 6 模型架构与消融实验设计逻辑

(一)原模型核心架构解析

DBO-CNN-GRU-Attention 6 模型针对多变量时序预测的 “高维特征冗余、长时序依赖、关键特征稀疏” 痛点,构建四层协同架构:

  1. DBO 优化层:通过深度信念优化算法,动态调整 CNN 与 GRU 的关键参数(如 CNN 卷积核大小、GRU 隐藏层神经元数、学习率),避免随机初始化导致的局部最优;
  1. CNN 特征提取层:采用 6 个并行卷积核(1D-CNN,核大小分别为 2、3、4、5、6、7),提取多变量时序数据的局部关键特征(如短期气象波动、设备负荷突变);
  1. GRU 时序建模层:将 CNN 输出的局部特征输入双向 GRU,捕捉长时序依赖关系(如气象数据的日 / 周周期、负荷数据的峰谷规律);
  1. Attention 6 注意力层:设计 6 头注意力机制,对 GRU 输出的时序特征进行权重分配,强化关键时刻(如负荷峰值时段、极端天气时刻)特征的贡献度。

(二)消融实验设计原则与变量设置

1. 设计原则

  • 单一变量原则:每次仅移除或替换一个核心模块,确保性能差异可归因于该模块;
  • 场景覆盖原则:同时覆盖多输出(如输入:历史温度 + 湿度 + 风速→输出:未来 3 步温度 + 湿度)与单输出(如输入:历史负荷 + 气象→输出:未来 1 步负荷)场景,验证模块的场景适配性;
  • 公平对比原则:所有消融模型共享相同的超参数(如训练轮次、批量大小、学习率初始值)、数据集与评价指标,消除无关变量干扰。

⛳️ 运行结果

📣 部分代码

method=@mapminmax;%归一化

% method=@mapstd;%标准化

[xs,mappingx]=method(data_train');x=xs;

[ys,mappingy]=method(y');y=ys';

%划分数据

n=size(x,1);

m=round(n*0.7);%前70%训练 后30%测试

XTrain=x(1:m,:)';

XTest=x(m+1:end,:)';

YTrain=y(1:m,:)';

YTest=y(m+1:end,:)';

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值