基于阿尔法进化(Alpha Evolution,AE)算法及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码

基于AE算法与三次样条的机器人路径规划

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在智能制造、仓储物流、服务机器人等领域,机器人的 “行走能力” 直接决定了任务效率与安全性。无论是工厂里穿梭搬运物料的 AGV 机器人,还是医院中配送药品的服务机器人,都需要一套精准、高效的路径规划方案 —— 既要避开障碍物,又要保证路径平滑以减少能耗,还要兼顾实时性。而阿尔法进化(Alpha Evolution,AE)算法三次样条曲线的结合,正为这一需求提供了极具竞争力的解决方案。

一、机器人路径规划:不止 “走得到”,更要 “走得好”

提到机器人路径规划,很多人会觉得 “只要让机器人从起点到终点不撞墙就行”,但实际应用中,这背后藏着多重核心需求:

  • 安全性

    :必须避开静态障碍物(如货架、墙体)与动态干扰(如行人、其他机器人),这是路径规划的底线;

  • 平滑性

    :机器人运动时若路径频繁转折,会导致电机频繁启停、机械损耗增加,同时可能引发货物晃动(如物流场景),因此需要连续且曲率变化平缓的路径;

  • 高效性

    :在满足安全与平滑的前提下,路径长度应尽可能短,以减少任务耗时;

  • 实时性

    :面对动态变化的环境(如仓库临时新增货物),算法需快速重新规划路径,避免机器人 “卡壳”。

传统路径规划算法(如 A*、Dijkstra)虽能快速找到 “可行路径”,但往往存在路径不平滑、动态环境适应性差的问题;而单纯的曲线拟合方法(如贝塞尔曲线)又难以高效避开复杂障碍物。此时,AE 算法的 “智能搜索” 能力与三次样条的 “平滑拟合” 能力,形成了完美的互补。

二、阿尔法进化(AE)算法:从 “进化” 中找到最优路径

(一)AE 算法的核心灵感:模拟生物进化的 “智慧筛选”

阿尔法进化算法的设计灵感源于生物进化理论,它模拟自然界中 “变异 - 选择 - 遗传” 的过程,在众多可能的路径中 “筛选” 出最优解。与传统优化算法相比,AE 算法的优势在于:

  • 全局搜索能力强

    :不易陷入局部最优解(比如不会因为某个小障碍物就绕远路);

  • 适应性好

    :无论是静态环境还是动态环境,都能通过调整 “进化参数” 快速适配;

  • 计算效率高

    :通过简化 “进化步骤”,减少不必要的计算,满足机器人实时规划需求。

(二)AE 算法用于路径规划的核心步骤

以 “仓库 AGV 机器人从起点 A 到终点 B,避开 3 个货架障碍物” 为例,AE 算法的实现流程如下:

  1. 路径编码

    :将 “机器人从 A 到 B 的路径” 转化为算法可识别的 “染色体”—— 比如用一系列 “路径节点坐标(x1,y1)、(x2,y2)…(xn,yn)” 表示一条路径,每个节点就是染色体上的 “基因”;

  1. 种群初始化

    :随机生成 N 条初始路径(即 N 个染色体),形成 “初始种群”。这些路径可能存在碰撞障碍物的情况,也可能路径冗长,但它们是后续 “进化” 的基础;

  1. 适应度评估

    :为每条路径打分(即计算 “适应度值”),打分标准围绕路径规划的核心需求:

    • 若路径碰撞障碍物,直接打 0 分(淘汰);

    • 路径长度越短,得分越高;

    • 路径转折越平缓(可通过节点间角度差衡量),得分越高;

  1. 进化操作

    :模拟生物进化的三大核心操作,优化种群:

    • 选择

      :保留适应度值前 30% 的 “优秀路径”,淘汰后 70% 的 “劣质路径”;

    • 交叉

      :从优秀路径中随机选两条,交换部分 “基因”(比如交换中间几个节点坐标),生成新的 “子代路径”;

    • 变异

      :对部分子代路径的个别节点坐标进行微小调整(比如 x1 微调为 x1±0.1),避免种群 “同质化”,保证搜索多样性;

  1. 迭代收敛

    :重复 “适应度评估 - 进化操作” 步骤,直到迭代次数达到预设值,或出现一条 “适应度值接近满分” 的最优路径,此时算法停止,输出这条最优路径的节点序列。

不过,这里有个关键问题:AE 算法输出的是 “离散的节点序列”,直接按这些节点运动,机器人会频繁转折(类似 “走折线”),无法满足平滑性需求。这时候,三次样条曲线就该登场了。

⛳️ 运行结果

图片

图片

📣 部分代码

  long=size(path,1);

  i=1;

  while i~=long-2

      a1=path1(i,1);

      b1=path1(i,2);

      a3=path1(i+2,1);

      b3=path1(i+2,2);

      if a1<a3

          if all(G(a1:a3,b1:b3)==0)% && all(G(a1:a3,b3)==0) && all(G(a1:a3,ceil((b1+b3)/2))==0)

              path1(i+1,:)=[];

              i=i-1;

          end

      else

          if all(G(a3:a1,b1:b3)==0)% && all(G(a3:a1,b3)==0) && all(G(a3:a1,ceil((b1+b3)/2))==0)

              path1(i+1,:)=[];

              i=i-1;

          end

      end

      i=i+1;

      long=size(path1,1);

  end

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值