✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在机器人、无人机等智能设备的路径规划领域,优化算法是核心驱动力。前文已介绍阿尔法进化(AE)算法与三次样条结合的路径规划方案,本文将进一步补充 AE 算法的最新背景,并新增三种新型优化算法的详细解析,同时构建无人机路径规划的数学模型,为相关研究与应用提供更全面的理论支撑。
一、四种新型优化算法深度解析
(一)阿尔法进化(Alpha Evolution,AE)算法:2024 年的进化算法新突破
阿尔法进化算法作为 2024 年提出的新型进化算法,打破了传统进化算法在解更新机制上的局限,其核心创新点在于自适应基向量与随机步长的协同设计,大幅提升了算法在复杂优化问题中的性能。
从算法原理来看,AE 算法通过构建动态进化路径,让基向量能够根据当前搜索状态自适应调整。例如,在优化初期,基向量会扩大搜索范围,帮助算法探索更广阔的解空间,避免陷入局部最优;随着迭代推进,基向量逐渐聚焦于优质解区域,配合随机步长的精细调整,实现全局探索与局部开发的平衡。
在实际应用中,这种设计使其在路径规划、函数优化等场景中表现突出。正如参考文献 [1](Gao H, Zhang Q. 2024)所验证,AE 算法在工程应用的人工智能领域,针对复杂约束问题的求解效率比传统遗传算法提升约 30%,收敛速度也显著加快。若需深入了解算法细节,可参考原文链接(基于阿尔法进化(Alpha Evolution,AE)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码_阿尔法进化算法-CSDN博客)。
(二)梦境优化算法(Dream Optimization Algorithm, DOA):模拟人类梦境的智能搜索
DOA 算法作为新型元启发式算法,其独特之处在于以人类梦境的记忆与遗忘过程为灵感来源,通过创新的搜索策略平衡全局探索与局部利用,在复杂工程优化问题中展现出优异性能。
从生物学机制映射来看,DOA 算法模拟快速眼动睡眠期大脑神经兴奋变化:低频脑电波功率降低对应算法初期的 “广泛探索”,此时通过 “遗忘补充策略” 随机生成新解,扩大搜索范围,避免过早收敛;高频脑电波功率增加则对应算法中后期的 “精细开发”,借助 “记忆策略” 保留优质解的特征,对解进行局部调整。
在算法阶段划分上,DOA 算法清晰明确:初期以探索为主,通过随机生成大量解覆盖解空间;中期采用 “记忆 - 遗忘” 协同策略,既保留优质解,又通过遗忘部分较差解引入新解,平衡全局与局部搜索;后期聚焦局部精细调整,基于已有优质解进行微小变异,提升解的精度。参考文献 [1](Lang Y, Gao Y. 2025)将其应用于实际工程问题,结果表明,在机械结构优化、路径规划等场景中,DOA 算法的全局最优解找到率比粒子群优化算法高 15%-20%。
(三)牛优化(OX Optimizer,OX)算法:源于公牛行为的稳健优化
2024 年由 AhmadK.AlHwaitat 与 HussamN.Fakhouri 提出的 OX 算法,将公牛的力量、灵活性、协作性等行为特性融入优化过程,使其在复杂多变的搜索空间中具备强大的鲁棒性与适应性。
从行为特性映射来看,公牛的 “力量” 对应算法的全局探索能力,能够突破局部最优解的束缚,在广阔解空间中快速移动;“灵活性” 体现在算法的步长调整机制上,可根据当前搜索状态动态改变步长,在优质解区域进行精细搜索;“协作性” 则模拟多公牛协同作业的模式,通过多解之间的信息交互,提升整体优化效率。
在实际性能方面,OX 算法在攻击检测中增强支持向量机性能的应用中(参考文献 [1],Al Hwaitat AK, Fakhouri HN. 2024),其模型训练精度比传统优化算法提升 8%-12%,且在数据噪声较大的情况下,仍能保持稳定的优化效果。原文链接(基于牛优化( OX Optimizer,OX)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码_牵须牛算法 程序-CSDN博客)提供了算法的详细实现步骤与实验数据。
(四)山羊优化算法(Goat Optimization Algorithm, GOA):适应恶劣环境的高效优化
2025 年提出的 GOA 算法,以山羊在恶劣、资源有限环境中的适应性行为为灵感,通过模拟山羊的觅食、移动与避害策略,实现对全局优化问题的高效求解。
在行为模拟细节上,GOA 算法包含三大核心策略:一是 “觅食策略”,模拟山羊根据植被分布(对应解的适应度)调整移动方向,优先向高适应度区域移动;二是 “移动模式”,结合山羊在复杂地形中的跳跃、行走特性,设计随机与定向结合的移动方式,平衡探索与开发;三是 “躲避寄生虫策略”,通过定期丢弃较差解,避免算法陷入局部最优,如同山羊通过移动躲避寄生虫干扰。
参考文献 [1](nozari, hamed, et al. 2025)将 GOA 算法应用于全局优化问题测试,结果显示,在多峰函数优化、工程设计优化等场景中,GOA 算法的收敛速度比灰狼优化算法快 20%-25%,且在高维度问题中表现出更强的稳定性。
二、无人机路径规划数学模型构建
无人机路径规划的核心是在满足多重约束的前提下,找到最优飞行路径。以下从目标函数与约束条件两方面,构建适用于多场景的无人机路径规划数学模型。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇