✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 题目
一、背景
低空经济的战略地位:
2024 年被广泛认为是我国低空经济发展的元年。年初全国两会上“低空经济”被写入《政府工作报告》,中央经济工作会议将其列为战略性新兴产业。工信部等四部门联合印发《通用航空装备创新应用实施方案(2024—2030 年)》,截至2024年底,全国近 30 个省份将低空经济写入政府工作报告或出台专项政策。低空经济是以低空空域(垂直高度1000米以下)飞行活动为核心,整合航空器研发制造、基础设施建设和运营、飞行保障服务等形成的综合性经济形态。
低空飞行的场景复杂:
低空飞行具有飞行场景复杂、飞行器小的特点。低空飞行器主要包括有人机、无人机、eVTOL等。低空飞行区域包括城市、森林、农田、山区、湖泊等,因飞行高度低,受地形导致的局地气流作用影响严重。且因飞行器尺寸小,气流变化导致飞行器稳定程度下降,极易产生事故。
湍流的主要形成机制复杂多样:
空气湍流是指空气流动中因速度、压力或方向剧烈变化而产生的无序、不规则运动状态。按照形成的原因,湍流可分为热力湍流和机械湍流。热力湍流指由温度差异驱动的浮力效应引发的湍流,能量来源于地表加热或空气团温差导致的密度不稳定。机械湍流指由外力强迫作用引起的湍流,能量来源于气流的动能因障碍物或摩擦作用转化为无序涡旋运动。实际大气中常出现机械与热力湍流的耦合。影响飞行的湍流主要产生机制包括:1)急流带边缘风速差异大,导致的风切变湍流。2)强对流天气中下沉气流、强垂直气流、涡旋及对流重力波产生湍流。3)地表受热不均导致空气垂直对流,产生湍流。4)气流受地形(如山脉、建筑物)作用被迫抬升、转向或产生地形重力波,导致湍流。5)下垫面的摩擦作用导致近地层湍流。这些湍流成因在低空都会出现,导致低空湍流结构复杂。
湍流强度的表示方式:
在湍流研究领域有很多种方法或算法反映湍流及其强度。在研究湍流现象时,可以从中选取部分作为衡量湍流的指标。
由于观测手段与数据的局限性,需要根据数据特点,选择不同的湍流强度计算公式。
可用于湍流监测的设备探测机制多样:
目前可用于监测并计算大气湍流强度的设备主要有地面自动气象站、风廓线雷达、超声风速计、微波辐射计、多普勒天气雷达等。地面自动站可测多个点位的水平风向风速,空间分辨率约5-10km,时间间隔1分钟。风廓线雷达测量风的垂直分布,垂直方向间隔为60m-240m,时间间隔6分钟,空间间隔为数十公里。微波辐射计可探测气温和湿度的垂直分布,探测高度一般为10km左右,垂直方向间隔为50-200m,时间间隔6分钟,空间间隔为数十公里。多普勒天气雷达可以获取以雷达为中心、多层仰角的锥面数据,可用信息包括雷达径向风速、谱宽,时间间隔6分钟,多普勒天气雷达的空间间隔一般为数百公里。
当前湍流监测中存在的问题:
依据上述现有设备,并不能直接监测湍流,而是需要从各种设备探测的信息中进行湍流计算。当大气湍流的尺度与飞机尺度相近时,容易造成飞机颠簸,这个尺度的湍流也就是在低空飞行中需要关注的。利用风廓线雷达计算湍流强度主要有功率法(Hocking and Mu,1997)等。利用多普勒天气雷达计算湍流强度主要有谱宽法、径向速度结构函数法等。
多种设备的探测模式不同,有的垂直探测、有的水平探测、有的点位探测,且探测的空间、时间分辨率不一致。目前已知存在问题包括:地面自动站数据仅有地面一层;风廓线雷达和微波辐射计为某一个位置的垂直探测;多普勒天气雷达的晴空探测能力不足,且缺乏低层探测数据。如何在现有探测条件下,构造更符合低空飞行的湍流强度指标,是当前低空湍流监测的主要问题。
图1.多种探测设备探测范围、空间分布示意图
二、问题描述
飞行活动是一个时空规划问题。在某一时间,确定飞行器在什么位置、掌握飞行器处于什么飞行状态,是保障飞行安全的关键(如图2所示)。湍流中速度、压力等物理参数同时在时间和空间维度上发生随机变化,其不规则性不仅体现为时间序列的脉动,也表现为空间分布的不规则性。湍流表现为两个维度的耦合状态,因此要进行飞行湍流的监测及预警,需要从空间和时间两个维度上开展研究。
问题一:利用风廓线雷达资料的湍流强度计算模型
根据题目提供的风廓线雷达和微波辐射计资料进行以下研究:综合利用风廓线雷达及微波辐射计两种设备的资料(近似认为两者的空间位置重合),建立计算不同高度上湍流强度的数学模型a。仅利用风廓线资料,在时间维度、空间维度或融合两个维度上进行计算,建立计算不同高度上湍流强度的数学模型b。其中模型a的技术相对成熟且可靠性高,以模型a的结果为标准,验证模型b的结果并对模型b进行优化,最终确立仅基于风廓线雷达资料的、统一时间和空间维度的湍流强度计算模型b。湍流强度计算结果为风廓线雷达所在位置、不同高度上的湍流强度数值,结果显示方式参照风廓线雷达资料的显示方式,为沿垂直高度的廓线。
提交材料:算法的框架、逻辑结构说明材料;采用的数学或物理方法的说明;两个模型结果对比验证的分析和判断依据;可运行的程序。
问题二:融合多种探测资料的三维空间湍流强度计算模型
根据题目提供的地面自动气象站、风廓线雷达、多普勒天气雷达(S波段、X波段)等设备的探测资料,考虑各种设备的探测方式、时空分辨率、探测要素等差异,选取或研发恰当的湍流强度算法,构建融合的三维空间上湍流强度计算模型c,要求时间及空间分辨率符合低空飞行器的尺度及低空飞行航线长度和宽度的尺度。其输出产品覆盖范围为包含所有地面自动气象站的矩形区域、高度2km以下、垂直分辨率50m、水平分辨率100m,并以提供的地理信息数据为地图,显示三维空间上湍流强度计算结果。
提交材料:算法的框架、逻辑结构说明材料;采用的数学或物理方法的说明;湍流强度结果的分析和可靠程度判断依据;可运行的程序。
问题三. 低空航路湍流预警及航路规划
当遇到的湍流漩涡大小与飞机大小相当时,飞机的颠簸最为明显;对于商用飞机,这相当于百米尺度的涡流尺寸,对低空飞行来说,其尺度更小。现在的数值天气预报不能直接预报湍流,它的空间分辨率也远大于飞行器的尺度。题目提供连续三小时(02点-05点)多种观测资料、连续六小时(02点-08点)数值天气预报数据及地理信息数据。利用问题二研发的模型c计算02点-05点三维空间上湍流强度,并作为验证标准。研发基于数值天气预报数据的湍流强度计算的数学物理模型d,计算02点-05点三维空间上的湍流强度,与模型c得到的验证标准进行对比,优化模型d,并对模型c和模型d的结果进行分析。将模型d用于05点-08点的数值预报数据,得到05点-08点的三维空间湍流强度预报。在给定起点、终点及飞行允许区域内,规划出仅考虑湍流条件的最优航路。
考虑在没有数值预报数据的情形下,仅依靠02点-05点连续三小时多种观测资料,构建非线性的时间维度上的湍流外推模型e,形成05点-06点的三维空间湍流强度预测结果,分析模型e计算结果的可靠性,并在给定起点、终点及飞行允许区域内,规划出仅考虑湍流条件的最优航路。
提交材料:算法的框架、逻辑结构说明材料;采用的数学或物理方法的说明;预警结果准确程度的分析和最优航路的判断依据;可运行的程序。
⛳️ 思路
(一)模型 a:风廓线雷达与微波辐射计资料融合模型
- 数据预处理与关联
首先对风廓线雷达数据(垂直分辨率 60-240m、时间间隔 6 分钟)和微波辐射计数据(垂直分辨率 50-200m、时间间隔 6 分钟)进行时空匹配 —— 因两者空间位置近似重合,以时间戳为基准对齐数据,对垂直分辨率差异采用线性插值法统一(如将风廓线雷达数据插值至 50m 垂直分辨率,与微波辐射计匹配)。
提取关键参数:风廓线雷达提供的径向风速脉动、垂直风速;微波辐射计提供的气温垂直梯度(用于量化热力湍流贡献)、湿度廓线(辅助修正气流稳定性)。
⛳️ 代码下载
1. 打开微信公众号,打开想要查询文章所在的微信公众号
2. 进入公众号后,点击右上角的小人图标
3. 点击右上角的搜索图标
4. 在搜索栏搜索你想要查找的内容,就可以查看所有包含该关键字的文章了。比如下面搜索“无人机”关键字
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇