自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

素质云笔记

营销数据科学:因果推断,CDP,用户画像,短视频挖掘等

  • 博客(614)
  • 资源 (5)
  • 收藏
  • 关注

原创 全球最大免费Airbnb数据集发布:如何利用近千市场的房源与定价数据进行深度分析?

全球最大免费Airbnb数据集发布:如何利用近千市场的房源与定价数据进行深度分析?

2025-08-29 14:45:00 438

原创 首席数据科学家的日常工作全景解析

首席/首席数据科学家的日常工作全景解析

2025-08-29 14:28:41 472

原创 Pyomo、PuLP 和 OR-Tools 解决约束优化问题效率对比

Pyomo、PuLP 和 OR-Tools 解决约束优化问题效率对比

2025-08-28 22:37:10 420

原创 LightGBM 在金融逾期天数预测任务中的经验总结

LightGBM 在金融逾期天数预测中的经验总结

2025-08-28 22:30:58 611

原创 90% 的机器学习团队仍停留在 2019 年的建模方式: Spark+XGBoost大规模训练

90% 的机器学习团队仍停留在 2019 年的建模方式: Spark+XGBoost大规模训练

2025-08-28 21:32:08 829

原创 因果推断在解决多触点归因问题上的必要性

本文展示了不同公司如何应对同一个问题:所有这些方法都未能真正告诉我们是什么真正导致了增长。它们描述了相关性,分配了功劳,并制造了精确的错觉,但它们未能回答反事实问题:如果我们没有开展这项营销活动,结果会有所不同吗?这就是因果推断改变游戏规则的地方。通过将营销衡量建立在明确的因果模型上并估计反事实结果,我们可以超越功劳分配,转向衡量增量提升——每个渠道创造的实际价值。简而言之:归因告诉我们谁在房间里。因果推断告诉我们谁真正推动了增长。

2025-08-28 16:03:56 647

原创 机器学习可解释库Shapash的快速使用教程(五)

机器学习可解释库Shapash的快速使用教程(五)

2025-08-28 15:38:09 503

原创 使用LLM构建TikTok风格的推荐系统

使用LLM构建TikTok风格的推荐系统

2025-08-27 17:02:06 553

原创 模型的可解释性:如果利用Shapash进行误差分析(四)

模型的可解释性:如果利用Shapash进行误差分析(四)

2025-08-27 16:28:35 763

原创 Shapash 2.3.0版本更新须知:增强 Web 应用内置功能(二)

Shapash 2.3.0版本更新须知:增强 Web 应用内置功能(二)

2025-08-27 15:54:08 867

原创 机器学习模型可解释库的介绍:Shapash (一)

机器学习模型可解释库的介绍:Shapash (一)

2025-08-26 22:52:23 1400

原创 模型解释性:使用 SHAPASH 在贷款被拒原因的解释性(三)

使用 SHAPASH 在贷款被拒原因的解释性

2025-08-26 22:35:22 1138

原创 客户生命周期价值帮助HelloFresh优化其营销支出

客户生命周期价值帮助HelloFresh优化其营销支出

2025-08-25 19:04:33 686

原创 Agent时代:数据科学家应该了解些什么

Agent时代:数据科学家应该了解些什么

2025-08-24 22:27:27 1107

原创 通义万相:AI生视频提示词生成秘籍/指南

通义万相:AI生视频提示词生成秘籍/指南

2025-08-22 17:59:53 2434

原创 阿里开源新AI code工具:qoder功能介绍

阿里开源新AI code工具:qoder功能介绍

2025-08-22 16:19:21 983

原创 Netflix的内容中台数据工程系统介绍:Media ML Data Engineering

Netflix的内容中台数据工程系统介绍:Media ML Data Engineering

2025-08-22 11:51:47 913

原创 使用统计分析进行时间序列异常检测系统(简单版)

使用统计分析进行时间序列异常检测系统

2025-08-21 15:18:50 1096

原创 Qwen-Image-Edit AI图像编辑的功能理解

Qwen-Image-Edit AI图像编辑的功能理解

2025-08-21 14:38:38 1022

原创 AI 视频翻译工具的调研笔记

AI视频翻译工具调研

2025-08-20 15:46:54 1145

原创 在SQL中使用大模型时间预测模型TimesFM

文章Google 的 TimesFM 集成到 BigQuery ML 中,代表了时间序列预测领域的范式转变。通过将基础模型的强大功能与 SQL 的简洁性相结合,它使数据专业人员能够轻松生成复杂的预测。

2025-08-20 14:08:26 966

原创 从现实与技术角度,看游戏科学为何选择《钟馗》

从现实与技术角度,看游戏科学为何选择《钟馗》

2025-08-20 12:25:16 876

原创 时间序列模型预测值置信区间的确定:Scalecast库使用

时序模型的置信区间以及预测间距:Scalecast库使用

2025-08-20 12:06:15 708

原创 多序列时间序列预测案例:scalecast库的使用

多序列时间序列预测案例:scalecast库的使用

2025-08-19 18:16:08 844

原创 Netflix | 机器学习模型可解释性的重要性

其亮点在于通过监测和分析模型性能,帮助团队快速识别数据漂移和模型退化,从而提升支付流程的顺畅性。

2025-08-19 17:59:20 1223

原创 Google 的 Opal:重新定义自动化的 AI 平台

Google 的 Opal:重新定义自动化的 AI 平台

2025-08-18 17:19:14 895

原创 MLArena:一款不错的AutoML工具介绍

MLArena:一款不错的AutoML工具介绍

2025-08-17 21:33:07 737

原创 数据科学家Andres Vourakis的总结:AI时代需要学习什么(一)

本篇文章适合已经有一定工作经验的数据科学家,亮点在于作者分享了他在快速变化

2025-08-17 17:01:10 601

原创 决策性建模中因果推断的重要性

决策性建模中因果推断的重要性

2025-08-15 17:25:29 836

原创 GenAI时代数据质量评估原则:FAV-QIRC 框架(一)

数据产品经理 | GenAI时代数据质量评估原则:FAV-QIRC 框架

2025-08-14 22:37:10 788

原创 因果推断在用户流失预警的案例研究

因果推断在用户流失预警的案例研究

2025-08-14 21:22:41 754

原创 使用马尔可夫链如何解码、预测股市模式

使用马尔可夫链如何解码、预测股市模式

2025-08-14 14:59:39 839

原创 供应链项目的提前期Lead Times如何合理评估?(二十)

供应链项目的提前期Lead Times如何合理评估?(二十)

2025-08-13 15:55:01 1388

原创 供应链需求预测建模中如何合理选择准确率指标?(十九)

供应链需求预测如何选择准确率指标?

2025-08-13 15:43:37 1052

原创 利用反事实预测评估历史促销活动的ROI

利用反事实预测评估历史促销活动的ROI

2025-08-12 16:56:10 850

原创 Artefact:沃尔玛的时间序列销量预测M5竞赛经验总结

Artefact:沃尔玛的时间序列销量预测M5竞赛经验总结

2025-08-12 16:45:51 951

原创 因果推断:uplift模型模拟案例(代码演示)

因果推断:uplift模型模拟案例(代码演示)

2025-08-12 16:18:48 850

原创 家庭用电量负荷智能数据分析案例

家庭用电量负荷智能数据分析案例

2025-08-12 15:59:21 1052

原创 智能定价模型中垃圾数据会造成利润受损(一)

智能定价模型中垃圾数据会造成利润受损(一)

2025-08-11 18:16:19 556

原创 智能定价模型:贝叶斯建模如何揭示利润风险(二)

智能定价模型:贝叶斯建模如何揭示利润风险(二)

2025-08-11 18:11:23 1322

数美科技李田:机器学习与在数美业务上的落地

数美科技李田:机器学习与在数美业务上的落地

2018-09-11

Prophet的案例数据

R的Prophet包的数据集

2017-02-26

word2vec自编译函数(By Jian Li,2014-09-21)

R语言实现深度学习word2vec,word2vec包含两个模型CBOW以及Skp-gram模型,R语言实现的过程中需要配置一些内容,详情见包中附件readme。

2016-05-07

VMware-player-12.0.0-part1

VMware-player-12.0.0-part1,一共两个部分。

2016-11-19

Rstudio Server + Docker + tensorflowR的dockerfile文件

Rstudio Server + Docker + tensorflowR - 云端使用R语言与GPU深度学习

2018-09-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除