- 博客(603)
- 资源 (5)
- 收藏
- 关注
原创 Animalcare公司供应链需求预测案例研究:模型与成果(下篇)
模型在测试集上表现出色,与基准的12个月移动平均线相比,SupChains的模型将包含偏差在内的整体误差分数从80%降低到65%,实现了19%的价值提升。在使用模型的前两个月,我们超过50%的预测完全基于机器学习生成。我们将展示模型如何通过严谨的方法,在不依赖外部驱动因素和复杂分割技术的情况下,实现了19%的预测误差降低,并探讨了其背后的核心算法与特征工程。该模型在整个18个月的预测周期内表现稳定,误差范围保持在60%至62%之间,证明了其成功捕捉了数据中的基本模式,而不仅仅是对短期趋势的反应。
2025-08-25 09:39:20
202
原创 Netflix的内容中台数据工程系统介绍:Media ML Data Engineering
Netflix的内容中台数据工程系统介绍:Media ML Data Engineering
2025-08-22 11:51:47
890
原创 在SQL中使用大模型时间预测模型TimesFM
文章Google 的 TimesFM 集成到 BigQuery ML 中,代表了时间序列预测领域的范式转变。通过将基础模型的强大功能与 SQL 的简洁性相结合,它使数据专业人员能够轻松生成复杂的预测。
2025-08-20 14:08:26
954
原创 Netflix | 机器学习模型可解释性的重要性
其亮点在于通过监测和分析模型性能,帮助团队快速识别数据漂移和模型退化,从而提升支付流程的顺畅性。
2025-08-19 17:59:20
1220
原创 数据科学家Andres Vourakis的总结:AI时代需要学习什么(一)
本篇文章适合已经有一定工作经验的数据科学家,亮点在于作者分享了他在快速变化
2025-08-17 17:01:10
589
原创 SupChains团队:化学品制造商 ChampionX 供应链需求预测案例分享(十七)
SupChains团队:化学品制造商 ChampionX 供应链需求预测案例分享
2025-08-10 22:24:41
917
原创 供应链需求预测项目如何设定合理的KPI(十四)
本篇文章适合希望优化供应链管理的读者,尤其是对KPI的选择与应用有兴趣的人。文章的亮点在于揭示了不当KPI使用可能导致的风险,如狭隘的关注、协作减少和与业务目标不一致等,同时提供了如何选择合适KPI的最佳实践。
2025-08-09 14:21:06
827
原创 SupChains团队:Animalcare公司供应链需求预测模型案例分享(十三)
本篇文章的亮点在于通过机器学习模型显著降低了预测误差19%,提升了供应链的整体效率。作者强调数据质量的重要性,并详细介绍了如何通过整合促销、库存和销售数据来优化预测。Animalcare通过与SupChains的合作,成功转型为机器学习驱动的预测模型,提升了对市场需求的响应能力,减少了库存积压和短缺风险。
2025-08-09 08:31:36
959
原创 供应链项目中产品的ABC XYZ分类法弊端(十)
该方法适用于需要提升需求预测准确性、优化库存管理和设置服务水平目标的场景。文章提供了更有效的替代策略,帮助规划者在复杂环境中做出更明智的决策。
2025-08-08 16:38:38
1028
word2vec自编译函数(By Jian Li,2014-09-21)
2016-05-07
Rstudio Server + Docker + tensorflowR的dockerfile文件
2018-09-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人