一、题目
1、题目描述
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树 每个节点 的左右两个子树的高度差的绝对值不超过 1 。
示例1:
输入:root = [3,9,20,null,null,15,7]
输出:true
示例2:
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false
示例3:
输入:root = []
输出:true
2、基础框架
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
}
};
3、原题链接
二、解题报告
1、思路分析
(1)如果 节点的左子树是平衡的,右子树也是平衡的,且两棵子树的高度差的绝对值小于2,那么整棵树就是平衡的;
(2)使用一个结构体 Info
保存以每个节点为根节点的树是否平衡以及高度
2、时间复杂度
O ( n ) O(n) O(n)
3、代码详解
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
struct Info {
bool isBalanced;
int height;
Info(bool i, int h) : isBalanced(i), height(h) { }
};
Info* process(TreeNode *root) {
if (root == nullptr) return new Info(true, 0);
Info *leftInfo = process(root->left);
Info *rightInfo = process(root->right);
int height = max(leftInfo->height, rightInfo->height) + 1;
bool isBalanced = leftInfo->isBalanced && rightInfo->isBalanced && abs(leftInfo->height - rightInfo->height) < 2;
return new Info(isBalanced, height);
}
bool isBalanced(TreeNode* root) {
return process(root)->isBalanced;
}
};
或者更简洁地写法:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int height(TreeNode *root) {
if (root == nullptr) return 0;
return max(height(root->left), height(root->right)) + 1;
}
bool isBalanced(TreeNode* root) {
if (root == nullptr) return true;
//左子树是平衡的 && 右子树是平衡的 && 左右子树高度之差绝对值小于等于1,则该树是平衡的
return isBalanced(root->left) && isBalanced(root->right) && abs(height(root->left) - height(root->right)) <= 1;
}
};