1、题目
请把一段纸条竖着放置在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。此时折痕是凹下去的,即折痕突起的方向指向纸条的背面。 如果从纸条的下边向上方连续对折2次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕、下折痕和上折痕。
给定一个输入参数 NNN,代表纸条都从下边向上方连续对折 NNN 次。 请从上到下打印所有折痕的方向。
示例1:
输入:N = 1
输出:down
示例2:
输入:N = 2
输出:down down up
2、分析
通过实践得知:
- 对折一次的折痕:1凹
- 对折两次的折痕:2凹 1凹 2凸
- 对折三次的折痕:3凹 2凹 3凸 1凹 3凹 2凸 3凸
可见,每增加一次折痕,就是在原折痕的左侧新增了一条凹,右侧新增了一条凸。
如果想从上往下打印所有折痕,它就是一棵二叉树的中序遍历序列:
且这棵二叉树有着明确的规则:
- 根节点是 凹 的
- 所有左子树的根是 凹 的
- 所有右子树的根是 凸 的
3、实现
C++ 版
/*************************************************************************
> File Name: 033.打印折纸的折痕.cpp
> Author: Maureen
> Mail: Maureen@qq.com
> Created Time: 三 6/22 14:20:40 2022
************************************************************************/
#include <iostream>
using namespace std;
/**
* 当前来到了一个节点(折痕),脑海中想象的
* 这个节点在第 i 层,共有 n 层,n 固定不变
* 这个节点如果是凹的,down = true
* 这个节点如果是凸的,down = false
* 函数功能:中序打印以你想象的节点为头的整棵树
* 额外空间复杂度:O(N),虽然节点数是 2^N - 1,但是实际占用的空间是O(N),
* N 是层数也是递归深度,用递归模拟了想象,并没有生成实际的树
*/
void process(int i, int n, bool down) {
if (i > n) return ;
//中序打印
process(i + 1, n, true); //左孩子
//cout << i << (down ? "凹" : "凸");
cout << (down ? "凹" : "凸");
process(i + 1, n, false);//右孩子
}
void printAllFolds(int n) {
process(1, n, true);
cout << endl;
}
int main() {
int n;
cin >> n;
printAllFolds(n);
return 0;
}