UVa524 Prime Ring Problem(素数环)

文章讲述了如何生成一个满足条件的整数环,即相邻两个整数之和为素数。首先尝试了生成-测试法,但由于排列数量巨大可能导致超时,然后引入了回溯法进行优化,通过深度优先搜索遍历解答树,有效解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、题目

在这里插入图片描述

2、题意

输入正整数 nnn,把整数1,2,3,…,n 组成一个环,使得相邻两个整数之和均为素数。输出时从整数 1开始逆时针排列。同一个环应恰好输出一次。n≤16n \le 16n16

3、分析

由模型不难得到:每个环对应于 1 ~ n 的一个排列,但排列总数高达 16! = 2 * 1013,生成-测试法会超时吗?进行实验:

for (int i = 2; i <= n * 2; i++) 
	isp[i] = is_prime(i);//生成素数表,加快后续判断
	
for (int i = 0; i < n; i++) 
	A[i] = i + 1; //第一个排列
	
do {
	int ok = 1;
	for (int i = 0; i < n; i++) 
		if(!isp[A[i] + A[(i + 1) % n]]) {  //判断合法性
			ok = 0; 
			break; 
		}

	if(ok) {
		for(int i = 0; i < n; i++) 
			printf("%d ", A[i]); //输出序列
		printf("\n");
	}
} while(next_permutation(A + 1, A + n)); //1的位置不变

运行后发现,当 n = 12 时就已经很慢,而当 n = 16 时无法运行出结果。下面试试回溯法:

void dfs(int cur){
	if (cur == n && isp[A[0] + A[n-1]]) { //递归边界。别忘了测试第一个数和最后一个数
		for (int i = 0; i < n; i++) printf("%d ", A[i]); //打印方案
		printf("\n");
	} else {
		for (int i = 2; i <= n; i++) //尝试放置每个数i
			if(!vis[i] && isp[i + A[cur - 1]]){ //如果i没有用过,并且与前一个数之和为素数
				A[cur] = i;
				vis[i] = 1; //设置使用标志
				dfs(cur + 1);
				vis[i] = 0; //清除标志
			}
	}
}

回溯法比生成-测试法快了很多,即使 n = 18 速度也不错。将上面的函数名设为 dfs 并不是巧合——从解答树的角度讲,回溯法正是按照深度优先的顺序在遍历解答树。

提示:如果最坏情况下的枚举量很大,应该使用回溯法而不是生成-测试法。

4、代码实现

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int is_prime(int x) {
	for(int i = 2; i * i <= x; i++)
    	if(x % i == 0) return 0;
  	return 1;
}

int n, A[50], isp[50], vis[50];
void dfs(int cur) {
	if(cur == n && isp[A[0]+A[n-1]]) {
    	for(int i = 0; i < n; i++) {
      		if(i != 0) printf(" ");
      		printf("%d", A[i]);
    	}
    	printf("\n");
  	} else {
  		for(int i = 2; i <= n; i++)
    		if(!vis[i] && isp[i+A[cur-1]]) {
      			A[cur] = i;
      			vis[i] = 1;
      			dfs(cur+1);
      			vis[i] = 0;
    		}
   	}
}

int main() {
	int kase = 0;
  	while(scanf("%d", &n) == 1 && n > 0) {
    	if(kase > 0) printf("\n");
    	printf("Case %d:\n", ++kase);
    	for(int i = 2; i <= n*2; i++) isp[i] = is_prime(i);
    	memset(vis, 0, sizeof(vis));
    	A[0] = 1;
    	dfs(1);
  	}	
  	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值