题目
Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, ..., N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
Output Specification:
For each pop sequence, print in one line "YES" if it is indeed a possible pop sequence of the stack, or "NO" if not.
Sample Input:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
Sample Output:
YES
NO
NO
YES
NO
要求
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
分析
题目要求判断给定的序列是否为栈中的序列经过pop操作得到的序列,如果是则输出YES,否则输出No.
思路:就是从出栈顺序推出进栈顺序。
当我们遇见输出x时,则要考虑的是x前的元素,即小于等于x的元素都先push栈,才会有pop x;
1、栈为空时,判断需要填入的数的个数是否小于栈的容量(即M);
2、若后一个数比前一个数大,又要push其之前的数再判断;
3、若后一个数比前一个数小,则要判断栈顶元素是否与其相等。
代码
#include <stdio.h>
#include <stdlib.h>
#define ERROR -1
typedef int ElementType;
typedef struct SNode *Stack;
struct SNode {
ElementType Top;
ElementType *Data;
int Size;
int Capacity; //栈的最大容量
};
int M, N, K;
int Check(int output[]);
int main()
{
scanf("%d %d %d\n", &M, &N, &K);
int output[N];
int i, k;
for(i = 0; i < K; i++) {
for(k = 0; k < N; k++) {
scanf("%d ", &output[k]);
}
if (Check(output))
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
Stack CreateStack(int MaxSize)
{
Stack S = (Stack)malloc(sizeof(struct SNode));
S->Data = (ElementType *)malloc(sizeof(ElementType) * MaxSize);
S->Top = -1;
S->Size = 0;
S->Capacity = MaxSize;
return S;
}
int IsStackEmpty(Stack S)
{
return S->Top == -1;
}
int IsStackFull(Stack S)
{
return S->Top == S->Capacity - 1;
}
void Push(Stack S, ElementType x)
{
S->Data[++(S->Top)] = x;
S->Size++;
}
ElementType Pop(Stack S)
{
if(IsStackEmpty(S)) {
printf("The Stack is empty!\n");
return ERROR;
}
S->Size--;
return S->Data[(S->Top)--];
}
int Check(int output[])
{
Stack S = CreateStack(M);
Push(S, 0); //将元素0插入栈中
int num = 1; //num为之后插入栈中的元素
int i = 0;
while (i < N) {
while (output[i] > S->Data[S->Top] && S->Size < (S->Capacity + 1))
Push(S,num++);
if (output[i] == S->Data[S->Top]) {
Pop(S);
i++;
} else //栈满,且输出序列中的数不等于栈顶元素
return 0;
}
return 1;
}
运行结果