03-树1 树的同构

本文探讨了如何判断两棵二叉树是否通过有限次左右孩子节点交换变为彼此,介绍了二叉树的静态链表表示法,详细阐述了构建二叉树及判断同构性的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

图1

图2

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No

要求

时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB

题意理解

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,那我们称两棵树是“同构”的。现给定两棵树,请你判断它们是否是同构的。

输入格式:输入给出2棵二叉树的信息:

  • 先在一行中给出该树的结点数,随后N行
  • 第i行对应编号第i个结点,给出该结点中存储的字母、其左孩子结点的编号、右孩子结点的编号。
  • 如果孩子结点为空,则在相应位置上给出“-”。

###输入样例:

8  (第一棵树)
A 1 2
B 3 4
C 5 -
D - -
E 6 -                              
G 7 -
F - -
H - -

=>输入数据每一行对应一个结点,编号依次是

,对应的二叉树为:

8  (第二棵树)
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

=>同理,输入数据每一行的编号依次:

,对应的二叉树为:

可见,不要求根结点作为第一个结点输入。

求解思路

  1. 二叉树表示
  2. 建二叉树
  3. 通过判别

二叉树表示

1)最常见的表示方法(链表):

2)用数组表示(补全成完全二叉树):

3)用结构数组表示二叉树:静态链表  (物理上的存储是数组,思想上是链表的思想)

每一列是数组的一个分量,包含了三个信息:结点本身的信息保存的字母,Left和Right指向左右儿子的位置的下标。用-1表示指向空的结点。

数据结构定义:

#define MaxTree 10
#define ElementType char
#define Tree int
#define Null -1    //为了区分关键字NULL(0),自定义的代表的是-1
 
struct TreeNode
{
    ElementType Element;
    Tree Left;
    Tree Right;
}T1[MaxTree], T2[MaxTree];

Left和Right是下标,不是指针,所以没有左右孩子时,Left和Right都为-1,而不是NULL。

数组中ABCD的顺序不一定,可以随意变换。如上面的那棵树,还可以表示成:

同样一棵树在结构数组中的静态链表表示方法不唯一,这就是灵活性。

如何通过静态链表确定根结点呢?

上面的四个结点分别放在0、1、3、4下标对应的位置上,哪些在结构体数组中出现,哪个没出现。B的左右孩子时4和3下标对应的结点,A的右孩子是0对应的结点,也就是0、3和4被用到了,只有1没有被用到。所以1对应的结点就是根结点。

程序框架搭建

      

int main()
{
    Tree R1,R2;
    
    R1 = BuildTree(T1);  //T1和T2是此前定义的结构数组,全局变量
    R2 = BuildTree(T2);
    if(Isomorphic(R1,R2))
        printf("Yes\n");
    else 
        printf("No\n");
    return 0;
}

如何建二叉树

按照题目意思以及输入样例:

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -                              
G 7 -
F - -
H - -

先输入结点的个数,然后依次输入结点存储的字母,结点的左右孩子结点的编号,所以代码如下:

Tree BuildTree(struct TreeNode T[])
{
    ...
    scanf("%d\n", &N);  //输入结点的个数
    if(N)
    {
        ......
        for(i = 0; i < N; i++)
        {
            scanf("%c %c %c\n", &T[i].Element, &cl, &cr);  //将左右孩子编号以字符形式输入,之后再处理成整型
            ......
        }
        ......
        
        Root = ???  //如何确定根结点是哪个?T[i]中没有任何结点的left(cl)和right(cr)指向它。只有一个。
    }
    return Root;
}

BuildTree函数的目的是创建一棵树,返回树的根结点。那么这个根结点是什么呢?可以按照之前说的,扫描一遍这个结构数组,看哪个下标对应的结点没有任何结点指向它。

Tree BuildTree(struct TreeNode T[])
{
    ...
    scanf("%d\n", &N);  //输入结点的个数
    if(N)
    {
        for(i = 0; i < N; i++) 
            check[i] = 0;  //数组check对应于n个结点
        for(i = 0; i < N; i++)
        {
            scanf("%c %c %c\n", &T[i].Element, &cl, &cr);  //将左右孩子编号以字符形式输入,之后再处理成整型
            if(cl != "-")   //左儿子不为空
            {
                T[i].Left = cl-'0';
                check[T[i].Left] = 1; //如果某个结点的left指向了某个位置,就将该位置的check设置为1.
            }
            else
                T[i].Left = Null;
            if(cr != '-')  //右儿子对应的编号
            {
                T[i].Right = cr-'0';
                check[T[i].Right] = 1;
            }
            else
                T[i].Right = Null;
        }
        //循环结束后,check数组中对应的值还是为0的就是根结点
        for(i = 0; i < N; i++)
            if(!check[i]) break;   
        Root = i  
    }
    return Root;
}

如何判别两二叉树同构

int Isomorphic(Tree R1, Tree R2)
{
    if(R1 == Null) && (R2 == Null)   //两棵树都是空的
        return 1;
    if((R1 == Null) && (R2 != Null)) || ((R1 != Null) && (R2 == Null))) //其中一棵树为空,另一棵树不为空
        return 0;    
    if(T1[R1].Element != T2[R2].Element)  //根结点不同
        return 0;      
    if((T1[R1].Left == Null) && (T2[R2].Left == Null))   //都没有左孩子
        return Isomorphic(T1[R1].Left, T2[R2].Left);
    if(((T1[R1].Left != Null) && (T2[R2].Left != Null)) 
        && (T1[T1[R1].Left].Element == T2[T2[R2].Left].Element))  //如果左孩子同时不为空,且Element都相同
        return (Isomorphic(T1[R1].Left, T2[R2].Left)  && Isomorphic(T1[R1].Right, T2[R2].Right));  //判断左边同构,右边是否同构
    else 
        //这个else包含的情况:
        //1、两棵根结点的左子树的Element不同,则判断左边和右边同构,右边和左边同构。
        //2、一棵树的左子树为空,另一棵树的右子树为空,也要这样判断
        return (Isomorphic(T1[R1].Left, T2[R2].Right) && Isomorphic(T1[R1].Right, T2[R2].Left));
}

完整代码

#include <stdio.h>
#include <stdlib.h>
 
#define MaxTree 10
#define ElementType char
#define Tree int
 
struct TreeNode
{
    ElementType element;
    Tree left;
    Tree right;
}T1[MaxTree], T2[MaxTree];
 
Tree buildTree(struct TreeNode T[]);
int isomorphic(Tree t1, Tree t2);
 
int  main()
{
    Tree r1,r2;
    r1 = buildTree(T1);
    r2 = buildTree(T2);
    if (isomorphic(r1, r2))
        printf("Yes\n");
    else
        printf("No\n");
    return 0;
}
 
Tree buildTree(struct TreeNode T[])
{
    int n;
    scanf("%d\n", &n);
    Tree root = -1;
    if(n) {
        Tree check[MaxTree];
        int i;
        char cl,cr;
        for(i = 0; i < n; i++)
            check[i] = 0;
        for(i = 0; i < n; i++) {
            scanf("%c %c %c\n", &T[i].element, &cl, &cr);
            if(cl != '-') {
                T[i].left = cl - '0';
                check[T[i].left] = 1;
            } else {
                T[i].left = -1;
            }
            if(cr != '-') {
                T[i].right = cr - '0';
                check[T[i].right] = 1;
            } else {
                T[i].right = -1;
            }
        }
        for (i = 0; i < n; i++){
            if(!check[i])
                break;
        }
        root = i;
    }
    return root;
}
 
int isomorphic(Tree r1, Tree r2)
{
    if(r1 == -1 && r2 == -1)
        return 1;
    if((r1 == -1 && r2 != -1) || (r1 != -1 && r2 == -1))
        return 0;
    if(T1[r1].element != T2[r2].element)
        return 0;
    if(T1[r1].left == -1 && T2[r2].left == -1)
        return isomorphic(T1[r1].right, T2[r2].right);
    if((T1[r1].left != -1) && (T2[r2].left != -1)
       && T1[T1[r1].left].element == T2[T2[r2].left].element)
        return isomorphic(T1[r1].left, T2[r2].left) && isomorphic(T1[r1].right, T2[r2].right);
    else
        return isomorphic(T1[r1].left, T2[r2].right) && isomorphic(T1[r1].right, T2[r2].left);
 
}

ctrl+z 结束输入。

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值