pandas中通过日期获取年月日季度和透视聚合pivot_table分组聚合groupby的用法

本文介绍如何利用Python的Pandas库从Excel文件中读取订单数据,并进行时间序列的解析,包括提取年、月、日和季度信息。通过透视表和分组聚合的方法,对数据按类别和年份进行汇总,最后将结果保存到新的Excel文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import numpy as np

# pd.options.display.max_columns = 999  # 允许print输出的最大列数
orders_df = pd.read_excel(r"F:\101_pandas视频教程\pandas_excel\Orders.xlsx")

# 获取年
orders_df["year"] = pd.DatetimeIndex(orders_df["Date"]).year
# 获取月
orders_df["month"] = pd.DatetimeIndex(orders_df["Date"]).month
# 获取日
orders_df["day"] = pd.DatetimeIndex(orders_df["Date"]).day
# 获取季度
orders_df["quarter"] = pd.DatetimeIndex(orders_df["Date"]).quarter


# 透视聚合
pt1 = orders_df.pivot_table(index="Category", columns="year", values="Total", aggfunc=np.sum)
pt1.to_excel(r"F:\101_pandas视频教程\pandas_excel\汇总后1.xlsx")


# 分组聚合
groups = orders_df.groupby(["Category", "year"])
s = groups["Total"].sum()
c = groups["ID"].count()

pt2 = pd.DataFrame({"sum": s, "count": c})
pt2.to_excel(r"F:\101_pandas视频教程\pandas_excel\汇总后2.xlsx")

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

专职

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值