
概述
深度学习以其在图像识别、自然语言处理等任务中的卓越表现给各个领域带来了革命。然而,随着深度学习模型的复杂性和规模的增长,它们的计算成本变得昂贵且内存密集,使得它们在资源受限的设备上的部署变得具有挑战性。TensorFlow 剪枝是一种有效的优化技术,可以在不影响性能的情况下减小模型大小。在这篇博客中,我们将探讨 TensorFlow 剪枝的概念、其底层技术、剪枝感知训练、TensorFlow 剪枝工具、TensorFlow Lite 的部署、模型大小和准确性之间的权衡、评估量化模型,以及 TensorFlow Lite 的局限性和未来发展。修剪。

什么是修剪?
剪枝是深度学习和神经网络背景下使用的一种优化技术。它涉及有选择地从神经网络中删除某些被认为对模型性能不太重要或影响较小的组件。剪枝的目标是减少神经网络的大小和复杂性,使其计算效率更高、内存友好且推理速度更快。
在神经网络中,权重、连接或神经元等参数负责捕获输入数据中的模式和关系。然而,并非所有参数对模型的输出或预测精度都有同等的贡献。某些参数可能对模型的整体性能影响不大,删除它们可以产生更紧凑、更高效的模型,而不会显着牺牲准确性。这正是剪枝的可能。

修剪技术
采用各种剪枝技术来有效减小模型大小:
1. 权重修剪:
该技术涉及去除幅度较小或接近于零的个体权重。这些权重被认为对模型的性能不太重要,可以安全地修剪。
# Define the pruning schedule
pruning_params = {
'pruning_schedule': sparsity.PolynomialDecay(initial_sparsity=0.50,
final_sparsity=0.90,
begin_step=1000,
end_step=3000)}
# Create the pruned model
pruned_model = sparsity.prune_low_magnitude(model, **pruning_params)
在上面,我们使用 PolynomialDecay 函数定义剪枝计划,从 50% 稀疏度开始,在训练步骤 1000 到 3000 之间逐渐增加到 90%。然后,我们使用prune_low_magnitude创建剪枝模型,它将权重剪枝应用于基于修剪时间表。
2. 过滤器修剪:
整个过滤器(包括卷积层中的神经元集)根据某些标准被删除。激活值低或对准确性贡献最小的过滤器将被修剪。
# pruning schedule for filter pruning
pruning_params = {
'pruning_schedule': sparsity.PolynomialDecay(initial_sparsity=0.50,
final_sparsity=0.90,
begin_step=1000,
end_step=3000,
frequency=100)
上面的代码中应用了频率,并通过删除整个过滤器及其内核,删除过滤器意味着该过滤器生成的整个特征图将在推理过程中被丢弃。过滤器剪枝会导致更加结构化的稀疏模式,因为整个过滤器都被删除,从而产生更多的零值权重。
3.神经元修剪:
神经元修剪需要去除密集(完全连接)层中的整个神经元。对模型输出影响很小的神经元被修剪。
# Perform neuron pruning
# Assume we want to prune the entire second layer (64 neurons)
# We can set the weights of the second layer to zero to effectively remove the neurons
pruned_model = tf.keras.Sequential([
layers.Input(shape=(784,)),
layers.Dense(128, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')
])
# Copy the trained weights from the original model to the pruned model
for i in range(len(model.layers)):
pruned_model.layers[i].set_weights(model.layers[i].get_weights())
# Set the weights of the second layer to zero for pruning
pruned_model.layers[2].set_weights([np.zeros_like(pruned_model.layers[2].get_weights()[0]),
np.zeros_like(pruned_model.layers[2].get_weights()[1])])
- 步骤1:
在上面的代码中,在这段代码中,我们首先创建一个简单的三层全连接神经网络模型:两个隐藏层分别有128个和64个神经元,以及一个有10个神经元的输出层。我们创建一个新的剪枝模型, pruned_model,具有相同的架构。 - 步骤2:
为了执行神经元修剪,我们将第二层(64 个神经元)的权重设置为零。这有效地从第二层中删除了神经元以及它们与后续层的相应连接。 - 步骤3:
然后,我们将训练后的权重从原始模型复制到剪枝后的模型中,以保留剩余神经元的训练后的权重。将第二层的权重设置为零后,我们编译剪枝模型并评估其在测试集上的准确性。
剪枝可以在神经网络训练期间或之后进行。在训练过程中,可以采用剪枝感知技术来使模型适应剪枝后的结构并保持性能。或者,修剪可以作为单

深度学习模型计算成本高、内存密集,TensorFlow剪枝是有效优化技术。本文探讨了剪枝概念、技术、感知训练、工具,介绍了使用TFLite修剪模型、权衡模型大小与准确性、评估量化模型、部署集成等内容,还分析了剪枝局限性与未来发展。
最低0.47元/天 解锁文章
347

被折叠的 条评论
为什么被折叠?



